Molybdenum disulfide, a two-dimensional material extensively explored for potential applications in non-von Neumann computing technologies, has garnered significant attention owing to the observed hysteresis phenomena in MoS FETs. The dominant sources of hysteresis reported include charge trapping at the channel-dielectric interface and the adsorption/desorption of molecules. However, in MoS FETs with different channel thicknesses, the specific nature and density of defects contributing to hysteresis remain an intriguing aspect requiring further investigation.
View Article and Find Full Text PDFThis study demonstrates the fabrication of self-aligning three-dimensional (3D) platinum bridges for ammonia gas sensing using gas-phase electrodeposition. This deposition scheme can guide charged nanoparticles to predetermined locations on a surface with sub-micrometer resolution. A shutter-free deposition is possible, preventing the use of additional steps for lift-off and improving material yield.
View Article and Find Full Text PDFChemical vapor deposition is a widely used material deposition technique. It commonly provides a uniform material flux to the substrate to cause uniform thin film growth. However, the ability to precisely adjust the local deposition rate would be highly preferable.
View Article and Find Full Text PDFConventional rigid electronic systems use a number of metallization layers to route all necessary connections to and from isolated surface mount devices using well-established printed circuit board technology. In contrast, present solutions to prepare stretchable electronic systems are typically confined to a single stretchable metallization layer. Crossovers and vertical interconnect accesses remain challenging; consequently, no reliable stretchable printed circuit board (SPCB) method has established.
View Article and Find Full Text PDFParallel three-dimensional (3D) growth of different nanomaterials with submicrometer resolution is a promising approach to overcome some technological and economic limits encountered in planar integrated homogeneous films. The programmable multimaterial gas phase nanoparticle electrodeposition concept enables the fabrication of a 3D multimodal conductometric gas sensor array. The approach requires the deposition of more than one nanomaterial to achieve orthogonal sensing capabilities and multigas sensitivity and selectivity.
View Article and Find Full Text PDFThis communication presents fluidic self-assembly of Si-chip on a sequentially electroplated multilayer solder bump with tailored transformation imprinted melting points. The multilayer solder bump is a lead free ternary solder system, which provides a route to transform the melting point of interconnects for applications in solder directed fluidic self-assembly. The outermost metal layers form a low melting point BiIn solder shell (72 °C).
View Article and Find Full Text PDFThis publication provides an overview and discusses some challenges of surface tension directed fluidic self-assembly of semiconductor chips which are transported in a liquid medium. The discussion is limited to surface tension directed self-assembly where the capture, alignment, and electrical connection process is driven by the surface free energy of molten solder bumps where the authors have made a contribution. The general context is to develop a massively parallel and scalable assembly process to overcome some of the limitations of current robotic pick and place and serial wire bonding concepts.
View Article and Find Full Text PDFA millimeter thin rubber-like solid-state lighting module is reported. The fabrication of the lighting module incorporates assembly and electrical connection of light-emitting diodes (LEDs). The assembly is achieved using a roll-to-roll fluidic self-assembly.
View Article and Find Full Text PDFIn the field of sensors that target the detection of airborne analytes, Corona/lens-based-collection provides a new path to achieve a high sensitivity. An active-matrix-based analyte collection approach referred to as "airborne analyte memory chip/recorder" is demonstrated, which takes and stores airborne analytes in a matrix to provide an exposure history for off-site analysis.
View Article and Find Full Text PDFA first automated reel-to-reel fluidic selfassembly process for macroelectronic applications is reported. This system enables high-speed assembly of semiconductor dies (15 000 chips per hour using a 2.5 cm-wide web) over large-area substrates.
View Article and Find Full Text PDFThree different delivery concepts (standard diffusion, global electrodynamic precipitation, and localized nanolens-based precipitation) and three different SERS enhancement layers (a silver film, a nanolens-based localized silver nanoparticle film, and the standard AgFON) are compared. The nanolens concept is applied to increase the SERS signal: a factor of 633, when compared to a standard mechanism of diffusion, is observed.
View Article and Find Full Text PDFVarious nanostructured sensor designs currently aim to achieve or claim single molecular detection by a reduction of the active sensor size. However, a reduction of the sensor size has the negative effect of reducing the capture probability considering the diffusion-based analyte transport commonly used. Here we introduce and apply a localized programmable electrodynamic precipitation concept as an alternative to diffusion.
View Article and Find Full Text PDFContact electrification creates an invisible mark, overlooked and often undetected by conventional surface spectroscopic measurements. It impacts our daily lives macroscopically during electrostatic discharge and is equally relevant on the nanoscale in areas such as soft lithography, transfer, and printing. This report describes a new conceptual approach to studying and utilizing contact electrification beyond prior surface force apparatus and point-contact implementations.
View Article and Find Full Text PDFThis article reports patterned transfer of charge between conformal material interfaces through a concept referred to as nanocontact electrification. Nanocontacts of different size and shape are formed between surface-functionalized polydimethylsiloxane (PDMS) stamps and other dielectric materials (PMMA, SiO(2)). Forced delamination and cleavage of the interface yields a well-defined charge pattern with a minimal feature size of 100 nm.
View Article and Find Full Text PDFThis article reports and applies a recently discovered programmable multimaterial deposition process to the formation and combinatorial improvement of 3D nanostructured devices. The gas-phase deposition process produces charged <5 nm particles of silver, tungsten, and platinum and uses externally biased electrodes to control the material flux and to turn deposition ON/OFF in selected domains. Domains host nanostructured dielectrics to define arrays of electrodynamic 10 × nanolenses to further control the flux to form <100 nm resolution deposits.
View Article and Find Full Text PDFAn in situ gas-phase process that produces charged streams of Au, Si, TiO(2), ZnO, and Ge nanoparticles/clusters is reported together with a programmable concept for selected-area assembly/printing of more than one material type. The gas-phase process mimics solution electrodeposition whereby ions in the liquid phase are replaced with charged clusters in the gas phase. The pressure range in which the analogy applies is discussed and it is demonstrated that particles can be plated into pores vertically (minimum resolution 60 nm) or laterally to form low-resistivity (48 microOmega cm) interconnects.
View Article and Find Full Text PDFThis paper introduces a method for self-assembling and electrically connecting small (20-60 micrometer) semiconductor chiplets at predetermined locations on flexible substrates with high speed (62500 chips/45 s), accuracy (0.9 micrometer, 0.14 degrees), and yield (> 98%).
View Article and Find Full Text PDFThis article reports a new integration approach to produce arrays of ZnO microcrystals for optoelectronic and photovoltaic applications. Demonstrated applications are n-ZnO/p-GaN heterojunction LEDs and photovoltaic cells. The integration process uses an oxygen plasma treatment in combination with a photoresist pattern on magnesium doped GaN substrates to define a narrow sub-100 nm width nucleation region.
View Article and Find Full Text PDFThis letter reports on a new gas-phase printing approach to deposit nanomaterials into addressable areas on a surface with 50 nm lateral accuracy. Localized fringing fields that form around conventional resist patterns (PMMA and SiO2) with openings to a silicon substrate are used to direct the assembly of nanomaterials into the openings. Directed assembly was observed due to a naturally occurring inbuilt charge differential at the material interface that was further enhanced by corona charging to yield a field strength exceeding 1 MV/m in Kelvin probe force microscopy (KFM) measurements.
View Article and Find Full Text PDFThis article reports on a new charging process and Coulomb-force-directed assembly of nanoparticles onto charged surface areas with sub-100-nm resolution. The charging is accomplished using a flexible nanostructured thin silicon electrode. Electrical nanocontacts have been created as small as 50 nm by placing the nanostructured electrode onto an electret surface.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2004
We demonstrate the fabrication of packaged microsystems that contain active semiconductor devices and passive components by using a directed self-assembly technique. The directed self-assembly is accomplished by combining geometrical shape recognition with site-specific binding involving liquid solder. Microfabricated components with matching complementary shapes, circuits, and liquid solder-coated areas were suspended in ethylene glycol and agitated by using a turbulent liquid flow to initiate the self-assembly.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2002
This paper introduces a biomimetic strategy for the fabrication of asymmetrical, three-dimensional electronic devices modeled on the folding of a chain of polypeptide structural motifs into a globular protein. Millimeter-size polyhedra-patterned with logic devices, wires, and solder dots-were connected in a linear string by using flexible wire. On self-assembly, the string folded spontaneously into two domains: one functioned as a ring oscillator, and the other one as a shift register.
View Article and Find Full Text PDF