Rhodococcus erythropolis BG43 was isolated from soil and characterized as a degrader of the quorum sensing signal molecules 2-heptyl-3-hydroxy-4(1H)-quinolone (the Pseudomonas quinolone signal, PQS) and 2-heptyl-4(1H)-quinolone, produced by Pseudomonas aeruginosa. The complete genome of R. erythropolis BG43 consists of a circular chromosome and three plasmids, one of them circular and two linear ones.
View Article and Find Full Text PDFA bacterial strain, which based on the sequences of its 16S rRNA, gyrB, catA, and qsdA genes, was identified as a Rhodococcus sp. closely related to Rhodococcus erythropolis, was isolated from soil by enrichment on the Pseudomonas quinolone signal [PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone], a quorum sensing signal employed by the opportunistic pathogen Pseudomonas aeruginosa. The isolate, termed Rhodococcus sp.
View Article and Find Full Text PDFThe genes coding for quinaldine catabolism in Arthrobacter sp. strain Rue61a are clustered on the linear plasmid pAL1 in two upper pathway operons (meqABC and meqDEF) coding for quinaldine conversion to anthranilate and a lower pathway operon encoding anthranilate degradation via coenzyme A (CoA) thioester intermediates. The meqR2 gene, located immediately downstream of the catabolic genes, codes for a PaaX-type transcriptional repressor.
View Article and Find Full Text PDFBackground: Bacteria of the genus Arthrobacter are ubiquitous in soil environments and can be considered as true survivalists. Arthrobacter sp. strain Rue61a is an isolate from sewage sludge able to utilize quinaldine (2-methylquinoline) as sole carbon and energy source.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
September 2011
2-Alkyl-4(1H)-quinolones (AQs) and related derivatives, which exhibit a variety of biological properties, are secondary metabolites produced by, e.g., Pseudomonas and Burkholderia spp.
View Article and Find Full Text PDF