Background: Walking among crowds avoiding colliding with people is described by patients with vestibular disorders as vertigo-inducing. Accurate body motion while circumventing an impeding obstacle in the gait pathway is dependent on an integration of multimodal sensory cues. However, a direct role of vestibular signals in spatial perception of distance or orientation during obstacle circumvention has not been investigated to date.
View Article and Find Full Text PDFA battery of stance and gait tasks can be used to quantify functional deficits and track improvement in balance control following peripheral vestibular loss. An improvement could be due to at least 3 processes: partial peripheral recovery of sensory responses eliciting canal or otolith driven vestibular reflexes; central compensation of vestibular reflex gains, including substitution of intact otolith responses for pathological canal responses; or sensory substitution of visual and proprioceptive inputs for vestibular contributions to balance control. We describe the presumed action of all 3 processes observed for a case of sudden incapacitating acute bilateral peripheral loss probably due to vestibular neuritis.
View Article and Find Full Text PDF