Publications by authors named "Heiko Groiss"

Specimens for quality transmission electron microscopy (TEM) analyses must fulfil a range of requirements, which demand high precision during the prior preparation process. In this work, an optimized procedure for conventional TEM specimen preparation is presented that exploits the thickness-dependence of interference colors occurring in birefringent materials. It facilitates the correct estimation of specimen thickness to avoid damage or breaking during mechanical thinning and reduces ion-milling times below 30 min.

View Article and Find Full Text PDF

Development of light-harvesting properties and inhibition of photogenerated charge carrier recombination are of paramount significance in the photocatalytic process. In the present work, we described the synthesis of core-shell heterostructures, which are composed of titanium oxide (TiO) and cerium oxide (CeO) deposited on a reduced graphene oxide (rGO) surface as a conductive substrate. Following the synthesis of ternary rGO-CeO@TiO and rGO-TiO@CeO nanostructures, their photocatalytic activity was investigated toward the degradation of rhodamine B dye as an organic pollutant under UV light irradiation.

View Article and Find Full Text PDF

Unlabelled: transmission electron microscopy (TEM) is a powerful tool for advanced material characterization. It allows real-time observation of structural evolution at the atomic level while applying different stimuli such as heat. However, the validity of analysis strongly depends on the quality of the specimen, which has to be prepared by thinning the bulk material to electron transparency while maintaining the pristine properties.

View Article and Find Full Text PDF

The Si/SiGe heterosystem would be ideally suited for the realization of complementary metal-oxide-semiconductor (CMOS)-compatible integrated light sources, but the indirect band gap, exacerbated by a type-II band offset, makes it challenging to achieve efficient light emission. We address this problem by strain engineering in ordered arrays of vertically close-stacked SiGe quantum dot (QD) pairs. The strain induced by the respective lower QD creates a preferential nucleation site for the upper one and strains the upper QD as well as the Si cap above it.

View Article and Find Full Text PDF

Currently, energy-efficient electrocatalytic oxygen evolution from water involves the use of noble metal oxides. Here, we show that highly p-conducting zinc cobaltite spinel ZnCoO offers an enhanced electrocatalytic activity for oxygen evolution. We refer to previous studies on sputtered Zn-Co spinels with optimized conductivity for implementation as (p-type) transparent conducting oxides.

View Article and Find Full Text PDF

Wide range binary and ternary thin film combinatorial libraries mixing Al, Cu, and Ga were screened for identifying alloys with enhanced ability to withstand electromigration. Bidimensional test wires were obtained by lithographically patterning the substrates before simultaneous vacuum co-deposition from independent sources. Current-voltage measurement automation allowed for high throughput experimentation, revealing the maximum current density and voltage at the electrical failure threshold for each alloy.

View Article and Find Full Text PDF

Invited for the cover of this issue is the group of Ian Teasdale and Yolanda Salinas at the Johannes Kepler University Linz. The image depicts the self-propelled Janus micromotors reported in this work. Read the full text of the article at 10.

View Article and Find Full Text PDF

This work reports a reversible braking system for micromotors that can be controlled by small temperature changes (≈5 °C). To achieve this, gated-mesoporous organosilica microparticles are internally loaded with metal catalysts (to form the motor) and the exterior (partially) grafted with thermosensitive bottle-brush polyphosphazenes to form Janus particles. When placed in an aqueous solution of H O (the fuel), rapid forward propulsion of the motors ensues due to decomposition of the fuel.

View Article and Find Full Text PDF

Phase-separated semiconductors containing magnetic nanostructures are relevant systems for the realization of high-density recording media. Here, the controlled strain engineering of Ga δ FeN layers with Fe y N embedded nanocrystals (NCs) Al x Ga 1 - x N buffers with different Al concentration 0 < x Al < 41 % is presented. Through the addition of Al to the buffer, the formation of predominantly prolate-shaped ε -Fe 3 N NCs takes place.

View Article and Find Full Text PDF

The incorporation of an extraneous on-off braking system is necessary for the effective motion control of the next generation of micrometer-sized motors. Here, the design and synthesis of micromotors is reported based on mesoporous silica particles containing bipyridine groups, introduced by cocondensation, for entrapping catalytic cobalt(II) ions within the mesochannels, and functionalized on the surface with silane-derived temperature responsive bottle-brush polyphosphazene. Switching the polymers in a narrow temperature window of 25-30 °C between the swollen and collapsed state, allows the access for the fuel H O contained in the dispersion medium to cobalt(II) bipyridinato catalyst sites.

View Article and Find Full Text PDF

The addition of boron to GaAs nanowires grown by self-catalyzed molecular beam epitaxy was found to have a strong effect on the nanowire morphology, with axial growth greatly reduced as the nominal boron concentration was increased. Transmission electron microscopy measurements show that the Ga catalyst droplet was unintentionally consumed during growth. Concurrent radial growth, a rough surface morphology and tapering of nanowires grown under boron flux suggest that this droplet consumption is due to reduced Ga adatom diffusion on the nanowire sidewalls in the presence of boron.

View Article and Find Full Text PDF

The revival of interest in GeSn alloys with x ≥ 10% is mainly owed to the recent demonstration of optical gain in this group-IV heterosystem. Yet, Ge and Sn are immiscible over about 98% of the composition range, which renders epilayers based on this material system inherently metastable. Here, we address the temperature stability of pseudomorphic GeSn films grown by molecular beam epitaxy.

View Article and Find Full Text PDF

Controlling the size and shape of semiconducting nanocrystals advances nanoelectronics and photonics. Quantum-confined, inexpensive, solution-derived metal halide perovskites offer narrowband, color-pure emitters as integral parts of next-generation displays and optoelectronic devices. We use nanoporous silicon and alumina thin films as templates for the growth of perovskite nanocrystallites directly within device-relevant architectures without the use of colloidal stabilization.

View Article and Find Full Text PDF

Epitaxial growth techniques enable nearly defect free heterostructures with coherent interfaces, which are of utmost importance for high performance electronic devices. While high-vacuum technology-based growth techniques are state-of-the art, here we pursue a purely solution processed approach to obtain nanocrystals with eptaxially coherent and quasi-lattice matched inorganic ligand shells. Octahedral metal-halide clusters, respectively 0-dimensional perovskites, were employed as ligands to match the coordination geometry of the PbS cubic rock-salt lattice.

View Article and Find Full Text PDF

While galvanic exchange is commonly applied to metallic nanoparticles, recently its applicability was expanded to metal-oxides. Here the galvanic exchange is studied in metal/metal-oxide core/shell nanocrystals. In particular Sn/SnO is treated by Ag, Pt, Pt, and Pd.

View Article and Find Full Text PDF

Semiconductor light-emitters compatible with standard Si integration technology (SIT) are of particular interest for overcoming limitations in the operating speed of microelectronic devices. Light sources based on group IV elements would be SIT-compatible, but suffer from the poor optoelectronic properties of bulk Si and Ge. Here we demonstrate that epitaxially grown Ge quantum dots (QDs) in a defect-free Si matrix show extraordinary optical properties if partially amorphized by Ge-ion bombardment (GIB).

View Article and Find Full Text PDF

We present a comprehensive structural investigation of the Ge wetting layer (WL) and island growth on Si(001) substrates by a combination of AFM, high resolution transmission electron microscopy and the energy-differential coherent Bragg rod analysis (COBRA) x-ray method. By considering the influence of the initial Si surface morphology on the deposited Ge, these techniques provide quantitative information on the Ge content and its distribution, in particular within the WL which plays a crucial role in the formation of epitaxial nanostructures. In the WL, the Ge content was found to be above 80% for our growth conditions.

View Article and Find Full Text PDF

Photovoltaic technology requires light-absorbing materials that are highly efficient, lightweight, low cost and stable during operation. Organolead halide perovskites constitute a highly promising class of materials, but suffer limited stability under ambient conditions without heavy and costly encapsulation. Here, we report ultrathin (3 μm), highly flexible perovskite solar cells with stabilized 12% efficiency and a power-per-weight as high as 23 W g(-1).

View Article and Find Full Text PDF

By transmission electron microscopy with extended Burgers vector analyses, we demonstrate the edge and screw character of vertical dislocations (VDs) in novel SiGe heterostructures. The investigated pillar-shaped Ge epilayers on prepatterned Si(001) substrates are an attempt to avoid the high defect densities of lattice mismatched heteroepitaxy. The Ge pillars are almost completely strain-relaxed and essentially defect-free, except for the rather unexpected VDs.

View Article and Find Full Text PDF

Nanoparticles exhibiting localized surface plasmon resonances (LSPR) are valuable tools traditionally used in a wide field of applications including sensing, imaging, biodiagnostics and medical therapy. Plasmonics in semiconductor nanocrystals is of special interest because of the tunability of the carrier densities in semiconductors, and the possibility to couple the plasmonic resonances to quantum confined excitonic transitions. Here, colloidal Cu2-xSe nanocrystals were synthesized, whose composition was shown by Rutherford backscattering analysis and electron dispersive X-ray spectroscopy, to exhibit Cu deficiency.

View Article and Find Full Text PDF

An innovative strategy in dislocation analysis, based on comparison between continuous and tessellated film, demonstrates that vertical dislocations, extending straight up to the surface, easily dominate in thick Ge layers on Si(001) substrates. The complete elimination of dislocations is achieved by growing self-aligned and self-limited Ge microcrystals with fully faceted growth fronts, as demonstrated by AFM extensive etch-pit counts.

View Article and Find Full Text PDF

We show that both the morphology and the optoelectronic properties of SiGe islands growing in the pits of periodically pre-patterned Si(001) substrates are determined by the amount of Ge deposited per unit cell of the pattern. Pit-periods (p) ranging from 300 to 900 nm were investigated, and Ge growth was performed by molecular beam epitaxy (MBE) at temperatures of 690 and 760 °C. The ordered SiGe islands show photoluminescence (PL) emission, which becomes almost completely quenched, once a critical island volume is exceeded.

View Article and Find Full Text PDF