Background: The identification of genomic signatures of colorectal cancer for risk stratification requires the study of large series of cancer patients with an extensive clinical follow-up. Multicentric clinical studies represent an ideal source of well documented archived material for this type of analyses.
Methods: To verify if this material is technically suitable to perform matrix-CGH, we performed a pilot study using macrodissected 29 formalin-fixed, paraffin-embedded tissue samples collected within the framework of the EORTC-GI/PETACC-2 trial for colorectal cancer.
Expression profiling analyses were used to elucidate the functional relevance of RAS proteins in mediating the effect of TGFB1 on the transcriptional phenotype of the pancreatic cancer cell line PANC-1. Despite the presence of one mutated KRAS2 allele in parental PANC-1 pancreatic cancer cells, RAS-dependent signal transduction remained susceptible to stimulation by EGF and TGFB1. To analyze the impact of RAS proteins on the TGFB1-induced transcriptional phenotype, we used PANC-1 cells stably transfected with a dominant negative HRAS(S17N) mutant or with a constitutively active KRAS2(G12V) mutant.
View Article and Find Full Text PDFClaudin-4 has been identified as an integral constituent of tight junctions and has been found to be highly expressed in pancreatic cancer. The aim of the present study was to elucidate the effect of claudin-4 on growth and metastatic potential in pancreatic cancer cells, as well as the regulation of claudin-4 by oncogenic pathways. Claudin-4 was stably overexpressed in SUIT-2 pancreatic cancer cells, and its effect on invasion and growth in vitro was examined by using two-chamber invasion assays, soft agar assays, and fluorescence-activated cell sorter analysis.
View Article and Find Full Text PDF