Publications by authors named "Heike A Behrensdorf-Nicol"

The muscle-relaxing effects of the botulinum neurotoxin (BoNT) serotypes A and B are widely used in clinical and aesthetic medicine. The standard method for measuring the biological activity of pharmaceutical BoNT products is a mouse bioassay. In line with the European Directive 2010/63/EU, a replacement by an animal-free method would be desirable.

View Article and Find Full Text PDF

Tetanus vaccines for human and veterinary use are based on toxoids resulting from a formaldehyde-mediated inactivation of tetanus neurotoxin (TeNT). Due to the high toxicity of TeNT, safety tests are mandatory for each batch of these toxoids. One of the tests addresses the irreversibility of inactivation: The toxoid is stored at 37 °C for 6 weeks and then subjected to in vivo toxicity testing.

View Article and Find Full Text PDF

Botulinum neurotoxins (BoNTs) inhibit the release of the neurotransmitter acetylcholine from motor neurons, resulting in highly effective muscle relaxation. In clinical and aesthetic medicine, serotype BoNT/A, which is most potent for humans, is widely used to treat a continuously increasing spectrum of disorders associated with muscle overactivity. Because of the high toxicity associated with BoNTs, it is mandatory to precisely determine the potency of every batch produced for pharmaceutical purposes.

View Article and Find Full Text PDF

Botulinum neurotoxins (BoNTs) are the most potent toxins known. However, the paralytic effect caused by BoNT serotypes A and B is taken advantage of to treat different forms of dystonia and in cosmetic procedures. Due to the increasing areas of application, the demand for BoNTs A and B is rising steadily.

View Article and Find Full Text PDF

Tetanus neurotoxin (TeNT) consists of two protein chains connected by a disulfide linkage: The heavy chain mediates the toxin binding and uptake by neurons, whereas the light chain cleaves synaptobrevin and thus blocks neurotransmitter release.Chemically inactivated TeNT (tetanus toxoid) is utilized for the production of tetanus vaccines. For safety reasons, each toxoid bulk has to be tested for the "absence of toxin and irreversibility of toxoid".

View Article and Find Full Text PDF

Tetanus vaccines contain detoxified tetanus neurotoxin. In order to check for residual toxicity, the detoxified material (toxoid) has to be tested in guinea pigs. These tests are time-consuming and raise animal welfare issues.

View Article and Find Full Text PDF

Assays for the detection of tetanus neurotoxin (TeNT) are relevant for research applications as well as for the safety testing of tetanus vaccines. So far, these assays are usually performed as toxicity tests in guinea pigs or mice. The alternative methods described to date were mostly based on the detection of the toxin's proteolytic activity.

View Article and Find Full Text PDF