Publications by authors named "Heijhuurs S"

Few cancers can be targeted efficiently by engineered T cell strategies. Here, we show that γδ T cell antigen receptor (γδ TCR)-mediated cancer metabolome targeting can be combined with targeting of cancer-associated stress antigens (such as NKG2D ligands or CD277) through the addition of chimeric co-receptors. This strategy overcomes suboptimal γ9δ2 TCR engagement of αβ T cells engineered to express a defined γδ TCR (TEGs) and improves serial killing, proliferation and persistence of TEGs.

View Article and Find Full Text PDF

Background: γ9δ2 T cells hold great promise as cancer therapeutics because of their unique capability of reacting to metabolic changes with tumor cells. However, it has proven very difficult to translate this promise into clinical success.

Methods: In order to better utilize the tumor reactivity of γ9δ2T cells and combine this with the great potential of T cell engager molecules, we developed a novel bispecific molecule by linking the extracellular domains of tumor-reactive γ9δ2TCRs to a CD3-binding moiety, creating gamma delta TCR anti-CD3 bispecific molecules (GABs).

View Article and Find Full Text PDF
Article Synopsis
  • - γδT cell receptors (γδTCRs) are effective in targeting cancer cells without needing specific MHC restrictions, making them a promising complement to existing therapies focused on other T cell types.
  • - A specific γδTCR, known as Vγ5Vδ1TCR, can attack HLA-A*24:02-expressing tumors without causing off-target effects, showing enhanced action when paired with the CD8α co-receptor in specially engineered T cells.
  • - The engineered T cells, now referred to as TEG011_CD8α, displayed improved tumor control in mouse models, achieving better T cell persistence and functionality, particularly in controlling tumors in the bone marrow compared to the original T
View Article and Find Full Text PDF

γδT cells play an important role in cancer immunosurveillance and are able to distinguish malignant cells from their healthy counterparts via their γδTCR. This characteristic makes γδT cells an attractive candidate for therapeutic application in cancer immunotherapy. Previously, we have identified a novel CD8α-dependent tumor-specific allo-HLA-A*24:02-restricted Vγ5Vδ1TCR with potential therapeutic value when used to engineer αβT cells from HLA-A*24:02 harboring individuals.

View Article and Find Full Text PDF

γδT cells are key players in cancer immune surveillance because of their ability to recognize malignant transformed cells, which makes them promising therapeutic tools in the treatment of cancer. However, the biological mechanisms of how γδT-cell receptors (TCRs) interact with their ligands are poorly understood. Within this context, we describe the novel allo-HLA-restricted and CD8α-dependent Vγ5Vδ1TCR.

View Article and Find Full Text PDF

Background: γ9δ2T cells, which express Vγ9 and Vδ2 chains of the T cell receptor (TCR), mediate cancer immune surveillance by sensing early metabolic changes in malignant leukemic blast and not their healthy hematopoietic stem counterparts via the γ9δ2TCR targeting joined conformational and spatial changes of CD277 at the cell membrane (CD277J). This concept led to the development of next generation CAR-T cells, so-called TEGs: αβT cells Engineered to express a defined γδTCR. The high affinity γ9δ2TCR clone 5 has recently been selected within the TEG format as a clinical candidate (TEG001).

View Article and Find Full Text PDF

γ9δ2T cells play a critical role in daily cancer immune surveillance by sensing cancer-mediated metabolic changes. However, a major limitation of the therapeutic application of γ9δ2T cells is their diversity and regulation through innate co-receptors. In order to overcome natural obstacles of γ9δ2T cells, we have developed the concept of T cells engineered to express a defined γδT cell receptor (TEGs).

View Article and Find Full Text PDF

Purpose: Engineering T cells with receptors to redirect the immune system against cancer has most recently been described as a scientific breakthrough. However, a main challenge remains the GMP-grade purification of immune cells selectively expressing the introduced receptor in order to reduce potential side effects due to poorly or nonengineered cells.

Experimental Design: In order to test a novel purification strategy, we took advantage of a model γδT cell receptor (TCR), naturally interfering with endogenous TCR expression and designed the optimal retroviral expression cassette to achieve maximal interference with endogenous TCR chains.

View Article and Find Full Text PDF

Human cytomegalovirus (CMV) infections and relapse of disease remain major problems after allogeneic stem cell transplantation (allo-SCT), in particular in combination with CMV-negative donors or cordblood transplantations. Recent data suggest a paradoxical association between CMV reactivation after allo-SCT and reduced leukemic relapse. Given the potential of Vδ2-negative γδT cells to recognize CMV-infected cells and tumor cells, the molecular biology of distinct γδT-cell subsets expanding during CMV reactivation after allo-SCT was investigated.

View Article and Find Full Text PDF

Immunotherapy with innate immune cells has recently evoked broad interest as a novel treatment option for cancer patients. γ9δ2T cells in particular are emerging as an innate cell population with high frequency and strong antitumor reactivity, which makes them and their receptors promising candidates for immune interventions. However, clinical trials have so far reported only limited tumor control by adoptively transferred γ9δ2T cells.

View Article and Find Full Text PDF

Major limitations of currently investigated αβT cells redirected against cancer by transfer of tumor-specific αβTCR arise from their low affinity, MHC restriction, and risk to mediate self-reactivity after pairing with endogenous α or βTCR chains. Therefore, the ability of a defined γ9δ2TCR to redirect αβT cells selectively against tumor cells was tested and its molecular interaction with a variety of targets investigated. Functional analysis revealed that a γ9δ2TCR efficiently reprograms both CD4(+) and CD8(+) αβT cells against a broad panel of cancer cells while ignoring normal cells, and substantially reduces but does not completely abrogate alloreactivity.

View Article and Find Full Text PDF