Tumor blood vessels are highly leaky in structure and have poor blood perfusion, which hampers infiltration and function of CD8T cells within tumor. Normalizing tumor vessels is thus thought to be important in promoting the flux of immune T cells and enhancing ant-tumor immunity. However, how tumor vasculature is normalized is poorly understood.
View Article and Find Full Text PDFBackground: The metabolic state of pulmonary artery smooth muscle cells (PASMCs) from patients with pulmonary arterial hypertension (PAH) is not well understood. In this study, we examined the balance between glycolysis and mitochondrial respiration in non-PAH-PASMCs and PAH-PASMCs under normoxia and hypoxia.
Methods: We investigated the enzymes involved in glycolysis and mitochondrial respiration, and studied the two major energy-yielding pathways (glycolysis and mitochondrial respiration) by measuring extracellular acidification rate (ECAR) and cellular oxygen consumption rate (OCR) using the Seahorse extracellular flux technology.
Mannose has anticancer activity that inhibits cell proliferation and enhances the efficacy of chemotherapy. How mannose exerts its anticancer activity, however, remains poorly understood. Here, using genetically engineered human cancer cells that permit the precise control of mannose metabolic flux, we demonstrate that the large influx of mannose exceeding its metabolic capacity induced metabolic remodeling, leading to the generation of slow-cycling cells with limited deoxyribonucleoside triphosphates (dNTPs).
View Article and Find Full Text PDFMetformin (Met), a first-line drug for type 2 diabetes, lowers blood glucose levels by suppressing gluconeogenesis in the liver, presumably through the liver kinase B1-dependent activation of AMP-activated protein kinase (AMPK) after inhibiting respiratory chain complex I. Met is also implicated as a drug to be repurposed for cancers; its mechanism is believed identical to that of gluconeogenesis inhibition. However, AMPK activation requires high Met concentrations at more than 1 mM, which are unachievable .
View Article and Find Full Text PDFEpidermal growth factor receptor (EGFR) is the most frequently mutated driver oncogene in nonsmoking-related, non-small cell lung cancer (NSCLC). EGFR-mutant NSCLC has a noninflamed tumor microenvironment (TME), with low infiltration by CD8+ T cells and, thus, immune-checkpoint inhibitors, such as antiprogrammed cell death-1 (anti-PD-1), have weak antitumor effects. Here, we showed that CD8+ T-cell responses were induced by an EGFR-tyrosine kinase inhibitor (TKI) in syngeneic Egfr-mutant NSCLC tumors, which was further pronounced by the sequential dual blockade of PD-1 and vascular endothelial growth factor receptor 2 (VEGFR2).
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
August 2022
Reactive oxygen species (ROS) acts as a second messenger to trigger biological responses in low concentrations, while it is implicated to be toxic to biomolecules in high concentrations. Mild inhibition of respiratory chain Complex I by metformin at physiologically relevant concentrations stimulates production of low-level mitochondrial ROS. The ROS seems to induce anti-oxidative stress response via activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione peroxidase (GPx), which results in not only elimination of ROS but also activation of cellular responses including resistance to apoptosis, metabolic changes, cell proliferation, senescence prevention, lifespan extension, and immune T cell activation against cancers, regardless of its effect controlling blood glucose level and T2DM.
View Article and Find Full Text PDFProstaglandin E2 (PGE2), a product of the cyclooxygenase (COX) pathway, is produced by tumors and surrounding stromal cells. It stimulates tumor progression, promotes angiogenesis and suppresses the anti-tumor response. Pharmacological inhibition of PGE2 synthesis has been shown to suppress tumor initiation and growth in vivo.
View Article and Find Full Text PDFMetformin, a commonly prescribed drug for type 2 diabetes mellitus, has been shown to activate AMP-activated protein kinase (AMPK). Notably, AMPK activation has recently been observed to be associated with anti-inflammatory responses. Metformin is also reported to elicit anti-inflammatory responses in CD4 T cells, resulting in improvement in experimental chronic inflammatory diseases, such as systemic lupus erythematosus.
View Article and Find Full Text PDFBackground: Metformin (Met) is the first-line treatment for type 2 diabetes mellitus and plays an effective role in treating various diseases, such as cardiovascular disease, neurodegenerative disease, cancer, and aging. However, the underlying mechanism of Met-dependent antitumor immunity remains to be elucidated.
Methods: MitoTEMPO, a scavenger of mitochondrial superoxide, abolished the antitumor effect of Met, but not antiprogrammed cell death (PD-1) antibody (Ab) treatment.
To achieve sustained anti-tumor immunity, tumor-infiltrating effector CD8 T lymphocytes (CD8 TILs) must be able to produce cytokines, including IFNγ, and proliferate robustly within the local tumor tissue upon antigen recognition. IFNγ production by CD8 TILs depends on glycolysis, whereas their proliferation additionally requires oxidative phosphorylation (OxPhos). The level of OxPhos, and hence the oxygen consumption rate, depends on mitochondrial biogenesis and requires the loading of metabolic precursors into the tricarboxylic acid cycle to keep it functioning.
View Article and Find Full Text PDFAnti-programmed cell death protein-1 (PD-1) antibodies have become a standard treatment for advanced melanoma. However, a predictive biomarker for assessing the efficacy of anti-PD-1 antibodies has not been identified. In cancer, CD8 T cells specific for tumor antigens undergo repeated T-cell receptor stimulation due to the persistence of cancer cells and gradually lose their ability to secrete interleukin 2 (IL-2), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ).
View Article and Find Full Text PDFThe metabolic changes and dysfunction in CD8 + T cells may be involved in tumor progression and susceptibility to virus infection in type 2 diabetes (T2D). In C57BL/6JJcl mice fed with high fat-high sucrose chow (HFS), multifunctionality of CD8 + splenic and tumor-infiltrating lymphocytes (TILs) was impaired and associated with enhanced tumor growth, which were inhibited by metformin. In CD8 + splenic T cells from the HFS mice, glycolysis/basal respiration ratio was significantly reduced and reversed by metformin.
View Article and Find Full Text PDFBackground/aim: Metformin, a drug for type 2 diabetes, also exerts anticancer effects. This study addressed the immunological effects of metformin on peritoneal dissemination.
Materials And Methods: We developed a mouse model of peritoneal dissemination via intraperitoneal injection of RLmale1, an X-ray-induced leukemia cell line, into BALB/c mice.
The herbal medicine berberine (BBR) has been recently shown to be an AMP-activated protein kinase (AMPK) productive activator with various properties that induce anti-inflammatory responses. We investigated the effects of BBR on the mechanisms of mucosal CD4T cell activation in vitro and on the inflammatory responses in T cell transfer mouse models of inflammatory bowel disease (IBD). We examined the favorable effects of BBR in vitro, using lamina propria (LP) CD4 T cells in T cell transfer IBD models in which SCID mice had been injected with CD4CD45RB T cells.
View Article and Find Full Text PDFAdaptive immune responses are critical for protection against infection with parasites. The metabolic state dramatically changes in T cells during activation and the memory phase. Recent findings suggest that metformin, a medication for treating type-II diabetes, enhances T-cell immune responses by modulating lymphocyte metabolism.
View Article and Find Full Text PDFCD11b+ myeloid subpopulations, including myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs), play crucial roles in the suppression of T-cell-mediated anti-tumor immunity. Regulation of these cell types is a primary goal for achieving efficient cancer immunotherapy. We found that metformin (Met) induces CD11b+-cell-mediated growth inhibition of a K7M2neo osteosarcoma independent of T cells, as growth inhibition of K7M2neo was still observed in wild-type (WT) mice depleted of T cells by antibodies and in SCID; this contrasted with the effect of Met on Meth A fibrosarcoma, which was entirely T-cell-dependent.
View Article and Find Full Text PDFAlthough immune checkpoint inhibitors have shown significant survival benefits in the treatment of several cancers, optimal outcomes have been limited to certain subsets of patients. In a previous study, we found that the addition of metformin to nivolumab, an anti-programmed cell death protein 1 (PD-1) antibody, yielded substantial tumor regression in mouse models. Further analysis revealed that the number of tumor-infiltrating CD8 T cells had increased markedly.
View Article and Find Full Text PDFIn infection, macrophages play a critical role in the host defense response. Metformin, an oral drug for type 2 diabetes, is attracting attention as a new supportive therapy against a variety of diseases, such as cancer and infectious diseases. The novel mechanisms for metformin actions include modulation of the effector functions of macrophages and other host immune cells.
View Article and Find Full Text PDFMetabolic pathways tightly regulate T cell response in host defense against infection and cancer. Glycolysis plays a key role in effector T cell differentiation and its function. More recent studies have demonstrated that tumor microenvironment forms hypoxia and metabolic disadvantage of immune cells.
View Article and Find Full Text PDFCD4CD25 regulatory T cells (Treg), an essential subset for preventing autoimmune diseases, is implicated as a negative regulator in anti-tumor immunity. We found that metformin (Met) reduced tumor-infiltrating Treg (Ti-Treg), particularly the terminally-differentiated CD103KLRG1 population, and also decreased effector molecules such as CTLA4 and IL-10. Met inhibits the differentiation of naïve CD4 T cells into inducible Treg (iTreg) by reducing forkhead box P3 (Foxp3) protein, caused by mTORC1 activation that was determined by the elevation of phosphorylated S6 (pS6), a downstream molecule of mTORC1.
View Article and Find Full Text PDFDespite years of effort and investment, there are few topical or systemic medications for skin wounds. Identifying natural drivers of wound healing could facilitate the development of new and effective treatments. When skin is injured, there is a massive increase of heat shock protein (Hsp) 90α inside the wound bed.
View Article and Find Full Text PDFThe rate of cancer incidence and mortality of Type 2 diabetes patients who were taking metformin seem to be decreased, comparing with those taking other drugs. We recently pro- vided compelling evidence showing that the effect might be mediated by immune system, thus, the reversion of exhausted tumor infiltrating CD8T lymphocytes (CD8TIL). Glycolysis is essential in CD8T cell function.
View Article and Find Full Text PDFA study to evaluate the effect of metformin on the immune system was commenced in July 2014. Metformin is one of the most commonly prescribed drugs for type 2 diabetes, and previous studies have reported that metformin has an anti-tumor effect. The aim of this study is to evaluate the efficacy of metformin on the immune system in human cancer patients in vivo.
View Article and Find Full Text PDFPurpose: FoxP3(+) Tregs inhibit immune responses against tumors. KW-0761 is a humanized anti-human CCR4 monoclonal antibody (mAb) that has antibody-dependent cellular cytotoxicity activity. Depletion of CCR4-expressing FoxP3(+) CD4 Tregs by KW-0761 infusion was investigated in solid cancer patients.
View Article and Find Full Text PDFComprehensive immunological evaluation is crucial for monitoring patients undergoing antigen-specific cancer immunotherapy. The identification and quantification of T cell responses is most important for the further development of such therapies. Using well-characterized clinical samples from a high responder patient (TK-f01) in an NY-ESO-1f peptide vaccine study, we performed high-throughput T cell receptor β-chain (TCRB) gene next generation sequencing (NGS) to monitor the frequency of NY-ESO-1-specific CD8+ T cells.
View Article and Find Full Text PDF