The response of materials under dynamic compression involves a complex interplay of various deformation mechanisms aimed at relieving shear stresses, yielding a remarkable diversity in material behavior. In this Letter, we utilize femtosecond x-ray diffraction coupled with nanosecond laser compression to reveal an intricate competition between multiple shear-relieving mechanisms within an elemental metal. Our observations in shocked-compressed single-crystal Zr indicate a disorder-mediated shear relaxation at lower pressures.
View Article and Find Full Text PDFAlumina (AlO) is an important ceramic material notable for its compressive strength and hardness. It represents one of the major oxide components of the Earth's mantle. Static compression experiments have reported evidence for phase transformations from the trigonal-corundum phase to the orthorhombic RhO(II)-type structure at ∼90 GPa, and then to the post-perovskite structure at ∼130 GPa, but these phases have yet to be directly observed under shock compression.
View Article and Find Full Text PDFCarbon is the fourth-most prevalent element in the Universe and essential for all known life. In the elemental form it is found in multiple allotropes, including graphite, diamond and fullerenes, and it has long been predicted that even more structures can exist at pressures greater than those at Earth's core. Several phases have been predicted to exist in the multi-terapascal regime, which is important for accurate modelling of the interiors of carbon-rich exoplanets.
View Article and Find Full Text PDFLaser compression has long been used as a method to study solids at high pressure. This is commonly achieved by sandwiching a sample between two diamond anvils and using a ramped laser pulse to slowly compress the sample, while keeping it cool enough to stay below the melt curve. We demonstrate a different approach, using a multilayer 'ring-up' target whereby laser-ablation pressure compresses Pb up to 150 GPa while keeping it solid, over two times as high in pressure than where it would shock melt on the Hugoniot.
View Article and Find Full Text PDFWe present molecular dynamics simulations of shock and release in micron-scale tantalum crystals that exhibit postbreakout temperatures far exceeding those expected under the standard assumption of isentropic release. We show via an energy-budget analysis that this is due to plastic-work heating from material strength that largely counters thermoelastic cooling. The simulations are corroborated by experiments where the release temperatures of laser-shocked tantalum foils are deduced from their thermal strains via in situ x-ray diffraction and are found to be close to those behind the shock.
View Article and Find Full Text PDFWe have used femtosecond x-ray diffraction to study laser-shocked fiber-textured polycrystalline tantalum targets as the 37-253 GPa shock waves break out from the free surface. We extract the time and depth-dependent strain profiles within the Ta target as the rarefaction wave travels back into the bulk of the sample. In agreement with molecular dynamics simulations, the lattice rotation and the twins that are formed under shock compression are observed to be almost fully eliminated by the rarefaction process.
View Article and Find Full Text PDF