The last decade has seen a large growth in fluorescence-guided surgery (FGS) imaging and interventions. With the increasing number of clinical specialties implementing FGS, the range of systems with radically different physical designs, image processing approaches, and performance requirements is expanding. This variety of systems makes it nearly impossible to specify uniform performance goals, yet at the same time, utilization of different devices in new clinical procedures and trials indicates some need for common knowledge bases and a quality assessment paradigm to ensure that effective translation and use occurs.
View Article and Find Full Text PDFNear-infrared spectroscopy (NIRS) is an established technique for measuring tissue oxygen saturation (StO), which is of high clinical value. For tissues that have layered structures, it is challenging but clinically relevant to obtain StO of the different layers, e.g.
View Article and Find Full Text PDFThis report is the second part of a comprehensive two-part series aimed at reviewing an extensive and diverse toolkit of novel methods to explore brain health and function. While the first report focused on neurophotonic tools mostly applicable to animal studies, here, we highlight optical spectroscopy and imaging methods relevant to noninvasive human brain studies. We outline current state-of-the-art technologies and software advances, explore the most recent impact of these technologies on neuroscience and clinical applications, identify the areas where innovation is needed, and provide an outlook for the future directions.
View Article and Find Full Text PDFThe editorial introduces the JBO Special Section on Tissue Phantoms to Advance Biomedical Optical Systems.
View Article and Find Full Text PDFSignificance: Multi-laboratory initiatives are essential in performance assessment and standardization-crucial for bringing biophotonics to mature clinical use-to establish protocols and develop reference tissue phantoms that all will allow universal instrument comparison.
Aim: The largest multi-laboratory comparison of performance assessment in near-infrared diffuse optics is presented, involving 28 instruments and 12 institutions on a total of eight experiments based on three consolidated protocols (BIP, MEDPHOT, and NEUROPT) as implemented on three kits of tissue phantoms. A total of 20 synthetic indicators were extracted from the dataset, some of them defined here anew.
A lack of accepted standards and standardized phantoms suitable for the technical validation of biophotonic instrumentation hinders the reliability and reproducibility of its experimental outputs. In this Perspective, we discuss general criteria for the design of tissue-mimicking biophotonic phantoms, and use these criteria and state-of-the-art developments to critically review the literature on phantom materials and on the fabrication of phantoms. By focusing on representative examples of standardization in diffuse optical imaging and spectroscopy, fluorescence-guided surgery and photoacoustic imaging, we identify unmet needs in the development of phantoms and a set of criteria (leveraging characterization, collaboration, communication and commitment) for the standardization of biophotonic instrumentation.
View Article and Find Full Text PDFThe application of functional near-infrared spectroscopy (fNIRS) in the neurosciences has been expanding over the last 40 years. Today, it is addressing a wide range of applications within different populations and utilizes a great variety of experimental paradigms. With the rapid growth and the diversification of research methods, some inconsistencies are appearing in the way in which methods are presented, which can make the interpretation and replication of studies unnecessarily challenging.
View Article and Find Full Text PDFA novel methodology for solving the inverse problem of diffuse optics for two-layered structures is proposed to retrieve the absolute quantities of optical absorption and reduced scattering coefficients of the layers simultaneously. A liquid phantom with various optical absorption properties in the deep layer is prepared and experimentally investigated using the space-enhanced time-domain method. Monte-Carlo simulations are applied to analyze the different measurements in time domain, space domain, and by the new methodology.
View Article and Find Full Text PDFTime-domain optical brain imaging techniques introduce a number of different measurands for analyzing absorption changes located deep in the tissue, complicated by superficial absorption changes and noise. We implement a method that allows analysis, quantitative comparison and performance ranking of measurands under various conditions - including different values of reduced scattering coefficient, thickness of the superficial layer, and source-detector separation. Liquid phantom measurements and Monte Carlo simulations were carried out in two-layered geometry to acquire distributions of times of flight of photons and to calculate the total photon count, mean time of flight, variance, photon counts in time windows and ratios of photon counts in different time windows.
View Article and Find Full Text PDFTime-domain measurements facilitate the elimination of the influence of extracerebral, systemic effects, a key problem in functional near-infrared spectroscopy (fNIRS) of the adult human brain. The analysis of measured time-of-flight distributions of photons often relies on moments or time windows. However, a systematic and quantitative characterization of the performance of these measurands is still lacking.
View Article and Find Full Text PDFIn this article we propose an implementation of the extended Kalman filter (EKF) for the retrieval of optical and geometrical properties in two-layered turbid media assuming a dynamic setting, where absorption of each layer was changed in different steps. Prior works implemented the EKF in frequency-domain with several pairs of light sources and detectors and for static parameters estimation problems. Here we explore the use of the EKF in single distance, time-domain measurements, together with a corresponding forward model.
View Article and Find Full Text PDFA multivariate method integrating time and space resolved techniques of near-infrared spectroscopy is proposed for simultaneously retrieving the absolute quantities of optical absorption and scattering properties in tissues. The time-domain feature of photon migration is advantageously constrained and regularized by its spatially-resolved amplitude patterns in the inverse procedure. Measurements of tissue-mimicking phantoms with various optical properties are analyzed with Monte-Carlo simulations to validate the method performance.
View Article and Find Full Text PDFUnlabelled: Several cerebral oximeters based on near-infrared spectroscopy (NIRS) are commercially available that determine tissue oxygen saturation (StO). One problem is an inconsistency of StO readings between different brands of instruments. Liquid blood phantoms mimicking optical properties of the neonatal head enable quantitative device comparisons.
View Article and Find Full Text PDFFluorescence-guided surgery (FGS) and other interventions are rapidly evolving as a class of technologically driven interventional approaches in which many surgical specialties visualize fluorescent molecular tracers or biomarkers through associated cameras or oculars to guide clinical decisions on pathological lesion detection and excision/ablation. The technology has been commercialized for some specific applications, but also presents technical challenges unique to optical imaging that could confound the utility of some interventional procedures where real-time decisions must be made. Accordingly, the AAPM has initiated the publication of this Blue Paper of The Emerging Technology Working Group (TETAWG) and the creation of a Task Group from the Therapy Physics Committee within the Treatment Delivery Subcommittee.
View Article and Find Full Text PDFBiomed Tech (Berl)
October 2018
Optical imaging of biological tissue in vivo at multiple wavelengths in the near-infrared (NIR) spectral range can be achieved with picosecond time resolution at high sensitivity by time-correlated single photon counting. Measuring and analyzing the distribution of times of flight of photons randomly propagated through the tissue has been applied for diffuse optical imaging and spectroscopy, e.g.
View Article and Find Full Text PDFPulse oximetry for arterial oxygenation monitoring and tissue oximetry for monitoring of cerebral oxygenation or muscle oxygenation are based on quantitative in vivo diffuse optical spectroscopy. However, in both cases the information on absolute or relative concentration of human tissue constituents and especially on hemoglobin oxygenation can often not be retrieved by model-based analysis. An in vivo calibration against an accepted reference measurement can be a practical alternative.
View Article and Find Full Text PDFWe present broadband measurements of the optical properties of tissue-mimicking solid phantoms using a single integrating sphere to measure the hemispherical reflectance and transmittance under a direct illumination at the normal incident angle. These measurements are traceable to reflectance and transmittance scales. An inversion routine using the output of the adding-doubling algorithm restricted to the reflectance and transmittance under a direct illumination was developed to produce the optical parameters of the sample along with an uncertainty budget at each wavelength.
View Article and Find Full Text PDFObjective: For the further development of the fields of telemedicine, neurotechnology, and brain-computer interfaces, advances in hybrid multimodal signal acquisition and processing technology are invaluable. Currently, there are no commonly available hybrid devices combining bioelectrical and biooptical neurophysiological measurements [here electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS)]. Our objective was to design such an instrument in a miniaturized, customizable, and wireless form.
View Article and Find Full Text PDFIn this work, we have tested the optimal estimation (OE) algorithm for the reconstruction of the optical properties of a two-layered liquid tissue phantom from time-resolved single-distance measurements. The OE allows a priori information, in particular on the range of variation of fit parameters, to be included. The purpose of the present investigations was to compare the performance of OE with the Levenberg–Marquardt method for a geometry and real experimental conditions typically used to reconstruct the optical properties of biological tissues such as muscle and brain.
View Article and Find Full Text PDFA mechanically switchable solid inhomogeneous phantom simulating localized absorption changes was developed and characterized. The homogeneous host phantom was made of epoxy resin with black toner and titanium dioxide particles added as absorbing and scattering components, respectively. A cylindrical rod, movable along a hole in the block and made of the same material, has a black polyvinyl chloride cylinder embedded in its center.
View Article and Find Full Text PDFWe hypothesize that combining quantitative near-infrared spectroscopy (NIRS) with established invasive techniques will enable advanced insights into renal hemodynamics and oxygenation in small animal models. We developed a NIRS technique to monitor absolute values of oxygenated and deoxygenated hemoglobin and of oxygen saturation of hemoglobin within the renal cortex of rats. This NIRS technique was combined with invasive methods to simultaneously record renal tissue oxygen tension and perfusion.
View Article and Find Full Text PDF