Publications by authors named "Heidrun Steinmetz"

Micropollutant removal from effluent of conventional wastewater treatment has recently become one of the most discussed topics in the design and operation of wastewater treatment plants (WWTPs). This is due to the need to add a post-treatment step to the conventional processes to comply with stricter quality standards for effluents as outlined in the revised Urban Wastewater Treatment Directive (UWWTD). The adoption of on-site or decentralized greywater (GW) treatment in sustainable buildings using vertical-flow constructed wetlands (VFCWs) is a promising direction.

View Article and Find Full Text PDF

This work introduces a new sustainable alternative of powdered activated carbon (PAC) - magnetically harvestable and reusable after regeneration via inductive heating - for the adsorptive removal of organic micropollutants (OMP) from secondary wastewater effluents. For this purpose, two commercial PACs - lignite "L" (1187 m/g) and coconut "C"-based (1524 m/g) - were modified with magnetic iron oxide following two different synthesis approaches: infiltration ("infiltr") and surface deposition ("depos") route. The resulting magnetic powdered activated carbons (mPAC) and their precursor PACs were fully characterized before application.

View Article and Find Full Text PDF

Nutrient recovery from wastewater treatment plants (WWTPs) for hydroponic cultivation holds promise for closing the nutrient loop and meeting rising food demands. However, most studies focus on solid products for soil-based agriculture, thus raising questions about their suitability for hydroponics. In this study, we address these questions by performing the first in-depth assessment of the extent to which state-of-the-art nutrient recovery processes can generate useful products for hydroponic application.

View Article and Find Full Text PDF

The zeolite clinoptilolite (CLI) is known to be a very good ion exchanger, as it consists of a three-dimensional structure formed of AlO and SiO tetrahedral, which are connected by a common oxygen atom. The micropores formed by this structure (with free diameters in the range of 0.40 nm and 0.

View Article and Find Full Text PDF

Sludge water (SW) arising from the dewatering of anaerobic digested sludge causes high back loads of ammonium, leading to high stress (inhibition of the activity of microorganisms by an oversupply of nitrogen compounds (substrate inhibition)) for wastewater treatment plants (WWTP). On the other hand, ammonium is a valuable resource to substitute ammonia from the energy intensive Haber-Bosch process for fertilizer production. Within this work, it was investigated to what extent and under which conditions Carpathian clinoptilolite powder (CCP 20) can be used to remove ammonium from SW and to recover it.

View Article and Find Full Text PDF

Systematic investigations of the acidic dissolution of phosphorus (P), aluminum (Al), iron (Fe), and calcium (Ca) from Al-containing tertiary sludge were carried out in this work. The results were compared with the dissolution behavior of Al-containing anaerobically digested sludge to evaluate the P recovery potential in the form of struvite from tertiary sludge versus anaerobically digested sludge. Additional investigations of synthetically produced Al sludge served as a comparison for the dissolution behavior of P and Al without the influence of other contaminants (metals, biomass).

View Article and Find Full Text PDF

Source separation has thus far been addressed mainly within the context of decentralization in new development areas; centralized approaches for resource-oriented sanitation remained, however, largely disregarded. By means of inhabitant-specific load and volume flow balances, based on typical reference values for municipal wastewater in Germany, a stepwise transition towards on-site greywater recycling was investigated for a model wastewater treatment plant (WWTP). Up to 17% transition (separation of greywater from 17% of the total inhabitants), greywater separation was proven to benefit plant operation by reducing energy consumption for aeration.

View Article and Find Full Text PDF

The worldwide increasing consumption of the phosphonates 2-phosphonobutane-1,2,4-tricarboxylic acid [PBTC], 1-hydroxyethane 1,1-diphosphonic acid [HEDP], nitrilotris(methylene phosphonic acid) [NTMP], ethylenediamine tetra(methylene phosphonic acid) [EDTMP] and diethylenetriamine penta(methylene phosphonic acid) [DTPMP] over the past decades put phosphonates into focus of environmental scientists and agencies, as they are increasingly discussed in the context of various environmental problems. The hitherto difficult analysis of phosphonates contributed to the fact that very little is known about their concentrations and behavior in the environment. This work critically reviews the existing literature up to the year 2016 on the potential environmental relevance of phosphonates, their biotic and abiotic degradability, and their removal in wastewater treatment plants (WWTPs).

View Article and Find Full Text PDF

This work describes the production of polyhydroxyalkanoates (PHA) as a side stream process on a municipal waste water treatment plant (WWTP) and a subsequent analysis of the production potential in Germany and the European Union (EU). Therefore, tests with different types of sludge from a WWTP were investigated regarding their volatile fatty acids (VFA) production-potential. Afterwards, primary sludge was used as substrate to test a series of operating conditions (temperature, pH, retention time (RT) and withdrawal (WD)) in order to find suitable settings for a high and stable VFA production.

View Article and Find Full Text PDF

Phosphonates are an important group of phosphorus-containing compounds due to their increasing industrial use and possible eutrophication potential. This study involves investigations into the methods UV/Fe, Fenton and UV/Fenton for their removal from a pure water matrix and industrial wastewaters. It could be shown that the degradability of phosphonates by UV/Fe (6 kWh/m) in pure water crucially depended on the pH and was higher the less phosphonate groups a phosphonate contains.

View Article and Find Full Text PDF

Advanced nanocomposite magnetic particles functionalized with ZnFeZr-adsorbent are developed, characterized and tested for the removal and recovery of phosphate directly from spiked secondary wastewater effluent (∼10 mg/L PO-P). The phosphate loaded particles can be extracted from the liquid phase via magnetic separation, regenerated in a NaOH solution where phosphate desorption takes place, and reused in numerous cycles. Laboratory experiments demonstrate their reusability and stability in 60 consecutive adsorption/desorption runs where under optimal conditions > 90% total P-recovery efficiency is reached.

View Article and Find Full Text PDF

To characterise emissions from combined sewer overflows (CSOs) regarding organic micropollutants, a monitoring study was undertaken in an urban catchment in southwest Stuttgart, Germany. The occurrence of 69 organic micropollutants was assessed at one CSO outfall during seven rain events as well as in the sewage network at the influent of the wastewater treatment plant (WWTP) and in the receiving water. Several pollutant groups like pharmaceuticals and personal care products (PPCPs), urban biocides and pesticides, industrial chemicals, organophosphorus flame retardants, plasticisers and polycyclic aromatic hydrocarbons (PAHs) were chosen for analysis.

View Article and Find Full Text PDF

Anthropogenic Trace Compounds (ATCs) that continuously grow in numbers and concentrations are an emerging issue for water quality in both natural and technical environments. The complex web of exposure pathways as well as the variety in the chemical structure and potency of ATCs represents immense challenges for future research and policy initiatives. This review summarizes current trends and identifies knowledge gaps in innovative, effective monitoring and management strategies while addressing the research questions concerning ATC occurrence, fate, detection and toxicity.

View Article and Find Full Text PDF

This work describes the generation of volatile fatty acids (VFAs) as the first step of the polyhydroxyalkanoate (PHA) production cycle. Therefore four different substrates from a municipal waste water treatment plant (WWTP) were investigated regarding high VFA production and stable VFA composition. Due to its highest VFA yield primary sludge was used as substrate to test a series of operating conditions (temperature, pH, retention time (RT) and withdrawal (WD)) in order to find suitable conditions for a stable VFA production.

View Article and Find Full Text PDF

An innovative nanocomposite material is proposed for phosphate recovery from wastewater using magnetic assistance. Superparamagnetic microparticles modified with layered double hydroxide (LDH) ion exchangers of various compositions act as phosphate adsorbers. Magnetic separation and chemical regeneration of the particles allows their reuse, leading to the successful recovery of phosphate.

View Article and Find Full Text PDF