Int J Biol Macromol
January 2024
Biodegradable polymers with conductivity and mechanical properties are required in several applications where it is necessary to substitute conductive synthetic plastics due to the high waste produced. In this study, bionanocomposites (BNCs) have been compounded by thermoplastification of rice starch via melt mixing with carbon nanofibers (NPs) and modified NPs (NPs [M]) using plasma of acrylic acid. Spectroscopy analysis, X-ray diffraction, and morphology were studied to elucidate the effect of dispersion and compatibility on the conductivity and mechanical properties.
View Article and Find Full Text PDFBlends of polylactic acid (PLA) and thermoplastic starch (TS) with and without chemical modification were obtained by melt extrusion and used to obtain non-woven fabrics by melt-blowing for the first time. Different TS were obtained by reactive extrusion from native cassava, oxidized, maleated, and dual modified (oxidized and maleated) starch. The chemical modification of starch decreases the difference in viscosity and favors blending, resulting in more homogeneous morphologies, unlike the blends with unmodified TS, which displayed a visible phase separation with large TS droplets.
View Article and Find Full Text PDFPolymers (Basel)
May 2021
The thermal performance of closed-cell foams as an insulation device depends on the thermal conductivity. In these systems, the heat transfer mode associated with the convective contribution is generally ignored, and studies are based on the thermo-physical properties that emerge from the conductive contribution, while others include a term for radiative transport. The criterion found in the literature for disregarding convective heat flux is the cell diameter; however, the cell size for which convection is effectively suppressed has not been clearly disclosed, and it is variously quoted in the range 3-10 mm.
View Article and Find Full Text PDFIn this work, we report the synthesis of graphene oxide (GO) nanohybrids with starch, fructose, and micro-cellulose molecules by sonication in an aqueous medium at 90 °C and a short reaction time (30 min). The final product was washed with solvents to extract the nanohybrids and separate them from the organic molecules not grafted onto the GO surface. Nanohybrids were chemically characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy and analyzed by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray diffraction (XRD).
View Article and Find Full Text PDF