Publications by authors named "Heidi Zhang"

During expression of biotherapeutic proteins, complex mixtures of additional proteins are also produced by normal expression machinery of the host cell (termed "host cell proteins," or HCP). HCPs pose a potential impact to patient safety and product efficacy, and therefore must be well-characterized and the ability of the process to clear these proteins must be demonstrated. Due to the complexity of HCP, the method(s) used for monitoring must be demonstrated to provide sufficient information about relevant proteins.

View Article and Find Full Text PDF

Ensuring quality of PEGylating reagents is essential for the successful development and manufacturing of PEGylated biopharmaceuticals. However, little is known about how to maintain and verify the quality of PEG raw materials for PEGylated protein manufacturing. In this study, monomethoxy polyethylene glycol propionaldehyde (mPEG-aldehyde) was subjected to conditions that mimic accelerated stability conditions.

View Article and Find Full Text PDF

The lymphatic circulation mediates drainage of fluid and cells from the periphery through lymph nodes, facilitating immune detection of lymph-borne foreign Ags. The 10.1.

View Article and Find Full Text PDF

Protein-carbohydrate interactions are important for glycoprotein structure and function. Antibodies of the IgG class, with increasing significance as therapeutics, are glycosylated at a conserved site in the constant Fc region. We hypothesized that disruption of protein-carbohydrate interactions in the glycosylated domain of antibodies leads to the exposure of aggregation-prone motifs.

View Article and Find Full Text PDF

Gas-phase ion/molecule chemistry has been combined with ion mobility separation and time-of-flight mass spectrometry to enable the characterization of large poly(ethylene glycol)s (PEGs) and PEGylated molecules (>40 kDa). A facile method is presented in which gas-phase superbases are reacted in the high-pressure source region of commercial TOF mass spectrometers to manipulate the charge states of large ions generated by electrospray ionization (ESI). Charge stripping decreases the spectral congestion typically observed in ESI mass spectra of high molecular weight polydisperse PEGylated molecules.

View Article and Find Full Text PDF

Despite their potential to impact diagnosis and treatment of cancer, few protein biomarkers are in clinical use. Biomarker discovery is plagued with difficulties ranging from technological (inability to globally interrogate proteomes) to biological (genetic and environmental differences among patients and their tumors). We urgently need paradigms for biomarker discovery.

View Article and Find Full Text PDF

Mass spectrometry-based proteomics holds great promise as a discovery tool for biomarker candidates in the early detection of diseases. Recently much emphasis has been placed upon producing highly reliable data for quantitative profiling for which highly reproducible methodologies are indispensable. The main problems that affect experimental reproducibility stem from variations introduced by sample collection, preparation, and storage protocols and LC-MS settings and conditions.

View Article and Find Full Text PDF

Multiple approaches for simplifying the serum proteome have been described. These techniques are generally developed across different laboratories, samples, mass spectrometry platforms, and analysis tools. Hence, comparing the available schemes is impossible from the existing literature because of confounding variables.

View Article and Find Full Text PDF

A major bottleneck for validation of new clinical diagnostics is the development of highly sensitive and specific assays for quantifying proteins. We previously described a method, stable isotope standards with capture by antipeptide antibodies, wherein a specific tryptic peptide is selected as a stoichiometric representative of the protein from which it is cleaved, is enriched from biological samples using immobilized antibodies, and is quantitated using mass spectrometry against a spiked internal standard to yield a measure of protein concentration. In this study, we optimized a magnetic-bead-based platform amenable to high-throughput peptide capture and demonstrated that antibody capture followed by mass spectrometry can achieve ion signal enhancements on the order of 10(3), with precision (CVs <10%) and accuracy (relative error approximately 20%) sufficient for quantifying biomarkers in the physiologically relevant ng/mL range.

View Article and Find Full Text PDF

We propose a two-step normalization procedure for high-throughput mass spectrometry (MS) data, which is a necessary step in biomarker clustering or classification. First, a global normalization step is used to remove sources of systematic variation between MS profiles due to, for instance, varying amounts of sample degradation over time. A probability model is then used to investigate the intensity-dependent missing events and provides possible substitutions for the missing values.

View Article and Find Full Text PDF

Quantitative proteomic profiling using liquid chromatography-mass spectrometry is emerging as an important tool for biomarker discovery, prompting development of algorithms for high-throughput peptide feature detection in complex samples. However, neither annotated standard data sets nor quality control metrics currently exist for assessing the validity of feature detection algorithms. We propose a quality control metric, Mass Deviance, for assessing the accuracy of feature detection tools.

View Article and Find Full Text PDF

The open-source Computational Proteomics Analysis System (CPAS) contains an entire data analysis and management pipeline for Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) proteomics, including experiment annotation, protein database searching and sequence management, and mining LC-MS/MS peptide and protein identifications. CPAS architecture and features, such as a general experiment annotation component, installation software, and data security management, make it useful for collaborative projects across geographical locations and for proteomics laboratories without substantial computational support.

View Article and Find Full Text PDF

Mass spectrometry-based proteomic experiments, in combination with liquid chromatography-based separation, can be used to compare complex biological samples across multiple conditions. These comparisons are usually performed on the level of protein lists generated from individual experiments. Unfortunately given the current technologies, these lists typically cover only a small fraction of the total protein content, making global comparisons extremely limited.

View Article and Find Full Text PDF

Purpose: To describe a novel mutation in the RDS/Peripherin gene that results in a moderately severe form of adult-onset foveomacular dystrophy.

Design: Observational case series.

Methods: Selected members of a family with adult-onset foveomacular dystrophy underwent complete ophthalmic evaluation, including fundus photography and fluorescein angiography, in a tertiary care referral center.

View Article and Find Full Text PDF

In vitro oxidative folding of reduced recombinant human macrophage colony stimulating factor beta (rhm-CSFbeta) involves two major events: disulfide isomerization in the monomeric intermediates and disulfide-mediated dimerization. Kinetic analysis of rhm-CSFbeta folding indicated that monomer isomerization is slower than dimerization and is, in fact, the rate-determining step. A time-dependent determination of the number of free cysteines remaining was made after refolding commence.

View Article and Find Full Text PDF

Studies with the homodimeric recombinant human macrophage colony-stimulating factor beta (rhM-CSFbeta), show for the first time that a large number (9) of disulfide linkages can be reduced after amide hydrogen/deuterium (H/D) exchange, and the protein digested and analyzed successfully for the isotopic composition by electrospray mass spectrometry. Analysis of amide H/D after exchange-in shows that in solution the conserved four-helix bundle of (rhM-CSFbeta) has fast and moderately fast exchangeable sections of amide hydrogens in the alphaA helix, and mostly slow exchanging sections of amide hydrogens in the alphaB, alphaC, and alphaD helices. Most of the amide hydrogens in the loop between the beta1 and beta4 sheets exhibited fast or moderately fast exchange, whereas in the amino acid 63-67 loop, located at the interface of the two subunits, the exchange was slow.

View Article and Find Full Text PDF