Publications by authors named "Heidi Steendam"

The quadrature angular diversity aperture (QADA) receiver, consisting of a quadrant photodiode (QPD) and an aperture placed above the QPD, has been investigated for pose estimation for visible light systems. Current work on pose estimation for the QADA receiver uses classical camera sensor algorithms well known in computer vision. To this end, however, the light spot center first has to be obtained based on the RSS.

View Article and Find Full Text PDF

An accurate step length estimation can provide valuable information to different applications such as indoor positioning systems or it can be helpful when analyzing the gait of a user, which can then be used to detect various gait impairments that lead to a reduced step length (caused by e.g., Parkinson's disease or multiple sclerosis).

View Article and Find Full Text PDF

Radio frequency (RF) technologies are often used to track assets in indoor environments. Among others, ultra-wideband (UWB) has constantly gained interest thanks to its capability to obtain typical errors of 30 cm or lower, making it more accurate than other wireless technologies such as WiFi, which normally can predict the location with several meters accuracy. However, mainly due to technical requirements that are part of the standard, conventional medium access strategies such as clear channel assessment, are not straightforward to implement.

View Article and Find Full Text PDF

Radio frequency (RF)-based indoor positioning systems (IPSs) use wireless technologies (including Wi-Fi, Zigbee, Bluetooth, and ultra-wide band (UWB)) to estimate the location of persons in areas where no Global Positioning System (GPS) reception is available, for example in indoor stadiums or sports halls. Of the above-mentioned forms of radio frequency (RF) technology, UWB is considered one of the most accurate approaches because it can provide positioning estimates with centimeter-level accuracy. However, it is not yet known whether UWB can also offer such accurate position estimates during strenuous dynamic activities in which moves are characterized by fast changes in direction and velocity.

View Article and Find Full Text PDF

This paper proposes an automated system for monitoring mobility patterns using a network of very low resolution visual sensors (30 × 30 pixels). The use of very low resolution sensors reduces privacy concern, cost, computation requirement and power consumption. The core of our proposed system is a robust people tracker that uses low resolution videos provided by the visual sensor network.

View Article and Find Full Text PDF