The ability of the plant hormone auxin to enter a cell is critical to auxin transport and signaling. Auxin can cross the cell membrane by diffusion or via auxin-specific influx carriers. There is little knowledge of the magnitudes of these fluxes in plants.
View Article and Find Full Text PDFWhereas the plastid caseinolytic peptidase (Clp) P protease system is essential for plant development, substrates and substrate selection mechanisms are unknown. Bacterial ClpS is involved in N-degron substrate selection and delivery to the ClpAP protease. Through phylogenetic analysis, we show that all angiosperms contain ClpS1 and some species also contain ClpS1-like protein(s).
View Article and Find Full Text PDFOne of the most widely used techniques to quantify polar auxin transport is the measurement of auxin speed. To date there have been more than 90 published reports of auxin speed in 44 species. We have collected available speed measurements into a database, along with information on plant growth conditions and growth rate.
View Article and Find Full Text PDFPlasmodesmata permit solutes to move between cells nonspecifically and without having to cross a membrane. This symplastic connectivity, while straightforward to observe using fluorescent tracers, has proven difficult to quantify. We use fluorescence recovery after photobleaching, combined with a mathematical model of symplastic diffusion, to assay plasmodesmata-mediated permeability in the Arabidopsis (Arabidopsis thaliana) root meristem in wild-type and transgenic lines, and under selected chemical treatments.
View Article and Find Full Text PDFcpSRP54 (for chloroplast SIGNAL RECOGNITION PARTICLE54) is involved in cotranslational and posttranslational sorting of thylakoid proteins. The Arabidopsis (Arabidopsis thaliana) cpSRP54 null mutant, ffc1-2, is pale green with delayed development. Western-blot analysis of individual leaves showed that the SRP sorting pathway, but not the SecY/E translocon, was strongly down-regulated with progressive leaf development in both wild-type and ffc1-2 plants.
View Article and Find Full Text PDFCharacterization of the chloroplast proteome is needed to understand the essential contribution of the chloroplast to plant growth and development. Here we present a large scale analysis by nanoLC-Q-TOF and nanoLC-LTQ-Orbitrap mass spectrometry (MS) of ten independent chloroplast preparations from Arabidopsis thaliana which unambiguously identified 1325 proteins. Novel proteins include various kinases and putative nucleotide binding proteins.
View Article and Find Full Text PDFMol Cell Proteomics
January 2006
This study presents an analysis of the stromal proteome in its oligomeric state extracted from highly purified chloroplasts of Arabidopsis thaliana. 241 proteins (88% with predicted cTP), mostly assembled in oligomeric complexes, were identified by mass spectrometry with emphasis on distinguishing between paralogues. This is critical because different paralogues in a gene family often have different subcellular localizations and/or different expression patterns and functions.
View Article and Find Full Text PDF