Publications by authors named "Heidi Pertl-Obermeyer"

Pollen grains transport the sperm cells through the style tissue via a fast-growing pollen tube to the ovaries where fertilization takes place. Pollen tube growth requires a precisely regulated network of cellular as well as molecular events including the activity of the plasma membrane H+ ATPase, which is known to be regulated by reversible protein phosphorylation and subsequent binding of 14-3-3 isoforms. Immunodetection of the phosphorylated penultimate threonine residue of the pollen plasma membrane H+ ATPase (LilHA1) of Lilium longiflorum pollen revealed a sudden increase in phosphorylation with the start of pollen tube growth.

View Article and Find Full Text PDF

Tannins are eco-friendly, bio-sourced, natural, and highly reactive polyphenols. In the past decades, the understanding of their versatile properties has grown substantially alongside a continuously broadening of the tannins' application scope. In particular, recently, tannins have been increasingly investigated for their interaction with other species in order to obtain tannin-based hybrid systems that feature advanced and/or novel properties.

View Article and Find Full Text PDF

Cross-linking converts noncovalent interactions between proteins into covalent bonds. The now artificially fused molecules are stable during purification steps (e.g.

View Article and Find Full Text PDF

Sucrose as a product of photosynthesis is the major carbohydrate translocated from photosynthetic leaves to growing nonphotosynthetic organs such as roots and seeds. These growing tissues, besides carbohydrate supply, require uptake of water through aquaporins to enhance cell expansion during growth. Previous work revealed Sucrose Induced Receptor Kinase, SIRK1, to control aquaporin activity via phosphorylation in response to external sucrose stimulation.

View Article and Find Full Text PDF

The Characeae are multicellular green algae with very close relationship to land plants. Their internodal cells have been the subject of numerous (electro-)physiological studies. When exposed to light, internodal cells display alternating bands of low and high pH along their surface in order to facilitate carbon uptake required for photosynthesis.

View Article and Find Full Text PDF

Mass spectrometry (MS)-based large scale phosphoproteomics has facilitated the investigation of plant phosphorylation dynamics on a system-wide scale. However, generating large scale data sets for membrane phosphoproteins usually requires fractionation of samples and extended hands-on laboratory time. To overcome these limitations, we developed "ShortPhos," an efficient and simple phosphoproteomics protocol optimized for research on plant membrane proteins.

View Article and Find Full Text PDF

Intracellular vesicle trafficking is a fundamental process in eukaryotic cells. It enables cellular polarity and exchange of proteins between subcellular compartments such as the plasma membrane or the vacuole. Adaptor protein complexes participate in the vesicle formation by specific selection of the transported cargo.

View Article and Find Full Text PDF

Chloroplasts and mitochondria are unique endosymbiotic cellular organelles surrounded by two membranes. Essential metabolic networking between these compartments and their hosting cells requires the exchange of a large number of biochemical pathway intermediates in a directed and coordinated fashion across their inner and outer envelope membranes. Here, we describe the identification and functional characterization of a highly specific, regulated solute channel in the outer envelope of chloroplasts, named OEP40.

View Article and Find Full Text PDF

Measurements of protein abundance changes are important for biological conclusions on protein-related processes such as activity or complex formation. Proteomic analyses in general are almost routine tasks in many laboratories, but a precise and quantitative description of (absolute) protein abundance changes require careful experimental design and precise data quality. Today, a vast choice of metabolic labeling and label-free quantitation protocols are available, but the trade-off between quantitative precision and proteome coverage of quantified proteins including missing value problems remain.

View Article and Find Full Text PDF

Quantitative proteomic experiments in recent years became almost routine in many aspects of biology. Particularly the quantification of peptides and corresponding phosphorylated counterparts from a single experiment is highly important for understanding of dynamics of signaling pathways. We developed an analytical method to quantify phosphopeptides (pP) in relation to the quantity of the corresponding non-phosphorylated parent peptides (P).

View Article and Find Full Text PDF

Fertilization in plants relies on fast growth of pollen tubes through the style tissue toward the ovules. This polarized growth depends on influx of ions and water to increase the tube's volume. K(+) inward rectifying channels were detected in many pollen species, with one identified in Arabidopsis.

View Article and Find Full Text PDF

Unlabelled: During fertilisation in plants, pollen grains germinate and generate a pollen tube which grows through the style tissue to the egg apparatus delivering the two sperm cells for fertilisation. For this process, adaption to specific environmental conditions and communication between male and female organs are essential, requiring the sensing of internal and external signals which are translated into tube growth. The plasma membrane (PM) H(+) ATPase energises the pollen plasma membrane for nutrient, ion and water uptake, but additionally, its activity directly affects the germination frequency and drives the elongation of pollen tubes.

View Article and Find Full Text PDF

The quality of the collected experimental data very much depends on the quality of the biological starting material. Especially the proteome analysis of a highly dynamic system like the germinating and tube-growing pollen grain needs several precautions which allow an accurate and acceptable interpretation of the obtained results. Optimized protocols for pollen collection, storage, and in vitro culture as well as pollen organelle separations are described which help to obtain well-defined and reproducible experimental conditions for the subsequent proteomic analysis.

View Article and Find Full Text PDF

The plasma membrane H(+) ATPase is a member of the P-ATPase family transporting H(+) from the cytosol to the extracellular space and thus energizing the plasma membrane for the uptake of ions and nutrients. As a housekeeping gene, this protein can be detected in almost every plant cell including the exclusive expression of specific isoforms in pollen grains and tubes where its activity is a prerequisite for successful germination and growth of pollen tubes. This review summarizes the current knowledge on pollen PM H(+) ATPases and hypothesizes a central role for pollen-specific isoforms of this protein in tube growth.

View Article and Find Full Text PDF

The transmembrane receptor kinase family is the largest protein kinase family in Arabidopsis, and it contains the highest fraction of proteins with yet uncharacterized functions. Here, we present functions of SIRK1, a receptor kinase that was previously identified with rapid transient phosphorylation after sucrose resupply to sucrose-starved seedlings. SIRK1 was found to be an active kinase with increasing activity in the presence of an external sucrose supply.

View Article and Find Full Text PDF

An economic and cheap production of large amounts of recombinant allergenic proteins might become a prerequisite for the common use of microarray-based diagnostic allergy assays which allow a component-specific diagnosis. A molecular pharming strategy was applied to express the major allergen of Artemisia vulgaris pollen, Art v 1, in tobacco plants and tobacco cell cultures. The original Art v 1 with its endogenous signal peptide which directs Art v 1 to the secretory pathway, was expressed in transiently transformed tobacco leaves but was lost in stable transformed tobacco plants during the alternation of generations.

View Article and Find Full Text PDF