Background: The Salmonella enterica serovar Typhimurium PhoPQ two component system (TCS) is activated by low Mg2+ levels, low pH and by antimicrobial peptides (AP). Under Mg2+ limitation, the PhoPQ system induces pmrD expression, which post-translationally activates the PmrAB TCS. PhoPQ and PmrAB control many genes required for intracellular survival and pathogenesis.
View Article and Find Full Text PDFExtracellular DNA acts as a cation chelator and induces the expression of antibiotic resistance genes regulated by Mg(2+) levels. Here we report the characterization of novel DNA-induced genes in Pseudomonas aeruginosa that are annotated as homologs of the spermidine synthesis genes speD (PA4773) and speE (PA4774). The addition of sublethal concentrations of DNA and membrane-damaging antibiotics induced expression of the genes PA4773 to PA4775, as shown using transcriptional lux fusions and quantitative RT-PCR.
View Article and Find Full Text PDFPseudomonas aeruginosa is an opportunistic pathogen capable of causing both acute and chronic infections in susceptible hosts. Chronic P. aeruginosa infections are thought to be caused by bacterial biofilms.
View Article and Find Full Text PDFBiofilm formation is a conserved strategy for long-term bacterial survival in nature and during infections. Biofilms are multicellular aggregates of cells enmeshed in an extracellular matrix. The RetS, GacS and LadS sensors control the switch from a planktonic to a biofilm mode of growth in Pseudomonas aeruginosa.
View Article and Find Full Text PDFPseudomonas aeruginosa is an opportunistic pathogen that occupies a wide variety of environmental niches. Extracellular DNA is ubiquitous in various environments and is a rich source of carbon, nitrogen and phosphate. Here we show that P.
View Article and Find Full Text PDFBiofilms are surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, bacterial polysaccharides and proteins, which are up to 1000-fold more antibiotic resistant than planktonic cultures. To date, extracellular DNA has been shown to function as a structural support to maintain Pseudomonas aeruginosa biofilm architecture. Here we show that DNA is a multifaceted component of P.
View Article and Find Full Text PDFThe ability of Pseudomonas aeruginosa to cause a broad range of infections in humans is due, at least in part, to its adaptability and its capacity to regulate the expression of key virulence genes in response to specific environmental conditions. Multiple two-component response regulators have been shown to facilitate rapid responses to these environmental conditions, including the coordinated expression of specific virulence determinants. RsmA is a posttranscriptional regulatory protein which controls the expression of a number of virulence-related genes with relevance for acute and chronic infections.
View Article and Find Full Text PDFA novel vector has been constructed for the constitutive luminescent tagging of gram-negative bacteria by site-specific integration into the 16S locus of the bacterial chromosome. A number of gram-negative pathogens were successfully tagged using this vector, and the system was validated during murine infections of living animals.
View Article and Find Full Text PDFDiverse pathogenic bacteria have developed similar mechanisms to subvert host cell responses. In this Progress article, we focus on bacterial virulence factors with different enzymatic activities that can increase the expression of the Kruppel-like factor (KLF) family of mammalian transcriptional regulators through their ability to modify the activity of a common host-cell target - the Rho protein family. By using a common virulence strategy, both Gram-negative and Gram-positive pathogens exploit the KLF regulatory cascade to modulate nuclear factor kappaB activation, pro-inflammatory cytokine expression, actin cytoskeletal dynamics and phagocytosis.
View Article and Find Full Text PDFPseudomonas aeruginosa is an important opportunistic pathogen which is capable of causing both acute and chronic infections in immunocompromised patients. Successful adaptation of the bacterium to its host environment relies on the ability of the organism to tightly regulate gene expression. RsmA, a small RNA-binding protein, controls the expression of a large number of virulence-related genes in P.
View Article and Find Full Text PDFPosttranscriptional regulation of certain virulence-related genes in Pseudomonas aeruginosa is brought about by RsmA, a small RNA-binding protein. During interaction with airway epithelial cells, RsmA promoted actin depolymerization, cytotoxicity, and anti-internalization of P. aeruginosa by positively regulating the virulence-associated type III secretion system.
View Article and Find Full Text PDF