Publications by authors named "Heidi Morales"

Ranaviruses such as frog virus 3 ([FV3] family Iridoviridae) are increasingly prevalent pathogens that infect reptiles, amphibians, and fish worldwide. Whereas studies in the frog Xenopus laevis have revealed the critical involvement of CD8 T-cell and antibody responses in host resistance to FV3, little is known about the role played by innate immunity to infection with this virus. We have investigated the occurrence, composition, activation status, and permissiveness to infection of peritoneal leukocytes (PLs) in Xenopus adults during FV3 infection by microscopy, flow cytometry, and reverse transcription-PCR.

View Article and Find Full Text PDF

Ranaviruses (Iridoviridae) are increasingly associated with mortality events in amphibians, fish, and reptiles. They have been recently associated with mass mortality events in Brazilian farmed tadpoles of the American bullfrog Rana catesbeiana Shaw, 1802. The objectives of the present study were to further characterize the virus isolated from sick R.

View Article and Find Full Text PDF

Activation of lymphocytes in mammals is often quantified by measuring the amount of proliferation during the expansion phase of an immune response. Bromodeoxyuridine (BrdU) incorporation and carboxyfluorescein diacetate succinimidyl ester (CFSE) dilution assays are some of the techniques widely used in mammalian studies of pathogen-induced proliferation and provide a convenient way of quantifying the cellular response. We have extended the use of these proliferation assays to the amphibian Xenopus laevis.

View Article and Find Full Text PDF

Although the ability of gp96 to activate APCs and generate CD8 CTLs against peptides they chaperone through interaction with the endocytic receptors CD91 is supported by solid evidence, its biological relevance in immune surveillance is debated. We have used an evolutionary approach to determine whether gp96 interacts with receptors expressed on APCs and promotes MHC class I cross-presentation of minor histocompatibility Ags (H-Ags) to CTLs in the frog Xenopus. We show that in Xenopus gp96 binds the CD91 homolog at the surface of peritoneal leukocytes, and that this binding is inhibited by molar excess of unlabeled gp96 or the CD91 ligand alpha2-macroglobulin, by anti-CD91 Ab and by the specific CD91 antagonist receptor-associated protein.

View Article and Find Full Text PDF

Frog virus 3 (FV3) or FV3-like viruses (Iridoviridae) infect a wide range of amphibian species, and they are becoming increasingly and causally associated with amphibian disease outbreaks worldwide. We have established the frog Xenopus laevis as an experimental model to study host defense and pathogenesis of FV3 infection. Although X.

View Article and Find Full Text PDF

As in mammals, B cell maturation in the amphibian Xenopus involves somatic hypermutation (SHM) and class switch recombination to diversify the B cell receptor repertoire in response to Ag stimulation. Unlike mammals, however, the resulting increase in Ab affinity is poor in Xenopus, which is possibly related to the absence of germinal centers and a suboptimal selection mechanism of SHM. In mammals, both SHM and class switch recombination are mediated by the activation-induced cytidine deaminase enzyme and under Ag-dependent regulation.

View Article and Find Full Text PDF

In mammals, resistance to primary and secondary viral infections critically involves major histocompatibility complex class I-restricted cytotoxic CD8+ T lymphocytes (CTLs). Although many gene homologues involved in CTL function have been identified in all vertebrate classes, antiviral CTL responses have been poorly characterized for ectothermic vertebrates. Because of the threat of emerging wildlife viral diseases to global biodiversity, fundamental research on comparative viral immunity has become crucial.

View Article and Find Full Text PDF

Xenopus serves as an experimental model to evaluate the contribution of adaptive immunity in host susceptibility to emerging ranaviral diseases that may contribute to amphibian population declines. It has been previously shown that following a secondary infection with the ranavirus frog virus 3 (FV3), adult Xenopus more rapidly clear FV3 and generate specific anti-FV3 IgY antibodies. We have further evaluated the potency and persistence of the Xenopus antibody response against FV3.

View Article and Find Full Text PDF

Xenopus has been used as an experimental model to evaluate the contribution of adaptive cellular immunity in amphibian host susceptibility to the emerging ranavirus FV3. Conventional histology and immunohistochemistry reveal that FV3 has a strong tropism for the proximal tubular epithelium of the kidney and is rarely disseminated elsewhere in Xenopus hosts unless their immune defenses are impaired or developmentally immature as in larvae. In such cases, virus is found widespread in most tissues.

View Article and Find Full Text PDF

The presence of the soluble intracellular heat shock protein gp96 (an endoplasmic reticulum resident protein) at the surface of certain cell types is an intriguing phenomenon whose physiological significance has been unclear. We have shown that the active surface expression of gp96 by some immune cells is found throughout the vertebrate phylum including the Agnatha, the only vertebrate taxon whose members (lamprey, hagfish) lack an adaptive immune system. To determine whether gp96 surface expression can be modulated by pathogens, we investigated the effects of in vitro stimulation by purified lipopolysaccharide (LPS) and the heat-killed gram-negative bacteria, Escherichia coli and Aeromonas hydrophilia.

View Article and Find Full Text PDF