Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors are commonly used to treat non-small cell lung cancers with EGFR mutations, but drug resistance often emerges. Intratumor heterogeneity is a known cause of targeted therapy resistance and is considered a major factor in treatment failure. This study identifies clones of EGFR-mutant non-small cell lung tumors expressing low levels of both wild-type and mutant EGFR protein.
View Article and Find Full Text PDFObjectives: Pleural mesothelioma (PM) is an aggressive malignancy with limited treatment options. The first-line therapy has remained unchanged for two decades and consists of pemetrexed in combination with cisplatin. Immune-checkpoint inhibitors (nivolumab plus ipilimumab) have high response rates, resulting in recent updates in treatment recommendations by the U.
View Article and Find Full Text PDFEpidermal growth factor receptor (EGFR) therapy using small-molecule tyrosine kinase inhibitors (TKIs) is initially efficacious in patients with EGFR-mutant lung cancer, although drug resistance eventually develops. Allosteric EGFR inhibitors, which bind to a different EGFR site than existing ATP-competitive EGFR TKIs, have been developed as a strategy to overcome therapy-resistant EGFR mutations. Here we identify and characterize JBJ-09-063, a mutant-selective allosteric EGFR inhibitor that is effective across EGFR TKI-sensitive and resistant models, including those with EGFR T790M and C797S mutations.
View Article and Find Full Text PDFUnlabelled: In-frame insertions in exon 20 of HER2 are the most common HER2 mutations in patients with non-small cell lung cancer (NSCLC), a disease in which approved EGFR/HER2 tyrosine kinase inhibitors (TKI) display poor efficiency and undesirable side effects due to their strong inhibition of wild-type (WT) EGFR. Here, we report a HER2-selective covalent TKI, JBJ-08-178-01, that targets multiple HER2 activating mutations, including exon 20 insertions as well as amplification. JBJ-08-178-01 displayed strong selectivity toward HER2 mutants over WT EGFR compared with other EGFR/HER2 TKIs.
View Article and Find Full Text PDFIn breast cancer, the currently approved anti-receptor tyrosine-protein kinase erbB-2 (HER2) therapies do not fully meet the expected clinical goals due to therapy resistance. Identifying alternative HER2-related therapeutic targets could offer a means to overcome these resistance mechanisms. We have previously demonstrated that an endosomal sorting protein, sortilin-related receptor (SorLA), regulates the traffic and signaling of HER2 and HER3, thus promoting resistance to HER2-targeted therapy in breast cancer.
View Article and Find Full Text PDFEpidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) are the standard-of-care treatment for -mutant non-small cell lung cancers (NSCLC). However, most patients develop acquired drug resistance to EGFR TKIs. HER3 is a unique pseudokinase member of the ERBB family that functions by dimerizing with other ERBB family members (EGFR and HER2) and is frequently overexpressed in -mutant NSCLC.
View Article and Find Full Text PDFThe clinical efficacy of epidermal growth factor receptor (EGFR)–targeted therapy in -mutant non–small cell lung cancer is limited by the development of drug resistance. One mechanism of EGFR inhibitor resistance occurs through amplification of the human growth factor receptor () proto-oncogene, which bypasses EGFR to reactivate downstream signaling. Tumors exhibiting concurrent mutation and amplification are historically thought to be codependent on the activation of both oncogenes.
View Article and Find Full Text PDFHER3 is a pseudokinase member of the EGFR family having a role in both tumor progression and drug resistance. Although HER3 was discovered more than 30 years ago, no therapeutic interventions have reached clinical approval to date. Because the evidence of the importance of HER3 is accumulating, increased amounts of preclinical and clinical trials with HER3-targeting agents are emerging.
View Article and Find Full Text PDFFor maximal oncogenic activity, cellular MYC protein levels need to be tightly controlled so that they do not induce apoptosis. Here, we show how ubiquitin ligase UBR5 functions as a molecular rheostat to prevent excess accumulation of MYC protein. UBR5 ubiquitinates MYC and its effects on MYC protein stability are independent of FBXW7.
View Article and Find Full Text PDFEradicating tumor dormancy that develops following epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) treatment of EGFR-mutant non-small cell lung cancer, is an attractive therapeutic strategy but the mechanisms governing this process are poorly understood. Blockade of ERK1/2 reactivation following EGFR TKI treatment by combined EGFR/MEK inhibition uncovers cells that survive by entering a senescence-like dormant state characterized by high YAP/TEAD activity. YAP/TEAD engage the epithelial-to-mesenchymal transition transcription factor SLUG to directly repress pro-apoptotic BMF, limiting drug-induced apoptosis.
View Article and Find Full Text PDFThe original version of this Article contained an error in Fig. 7. In panel b, the survival curves were shifted relative to the y axis.
View Article and Find Full Text PDFElevated MYC expression sensitizes tumor cells to apoptosis but the therapeutic potential of this mechanism remains unclear. We find, in a model of MYC-driven breast cancer, that pharmacological activation of AMPK strongly synergizes with BCL-2/BCL-X inhibitors to activate apoptosis. We demonstrate the translational potential of an AMPK and BCL-2/BCL-X co-targeting strategy in ex vivo and in vivo models of MYC-high breast cancer.
View Article and Find Full Text PDFMYC sustains non-stop proliferation by altering metabolic machinery to support growth of cell mass. As part of the metabolic transformation MYC promotes lipid, nucleotide and protein synthesis by hijacking citric acid cycle to serve biosynthetic processes, which simultaneously exhausts ATP production. This leads to the activation of cellular energy sensing protein, AMP-activated protein kinase (AMPK).
View Article and Find Full Text PDFRhoA regulates actin cytoskeleton but recent evidence suggest a role for this conserved Rho GTPase also in other cellular processes, including transcriptional control of cell proliferation and survival. Interestingy, loss of RhoA is synthetic lethal with oncogenic Myc, a master transcription factor that turns on anabolic metabolism to promote cell growth in many cancers. We show evidence indicating that the synthetic lethal interaction between RhoA loss and Myc arises from deficiency in glutamine utilization, resulting from impaired co-regulation of glutaminase expression and anaplerosis by Myc and RhoA - serum response factor (SRF) pathway.
View Article and Find Full Text PDFApoptosis caused by deregulated MYC expression is a prototype example of intrinsic tumor suppression. However, it is still unclear how supraphysiological MYC expression levels engage specific sets of target genes to promote apoptosis. Recently, we demonstrated that repression of SRF target genes by MYC/MIZ1 complexes limits AKT-dependent survival signaling and contributes to apoptosis induction.
View Article and Find Full Text PDFOncogenic levels of Myc expression sensitize cells to multiple apoptotic stimuli, and this protects long-lived organisms from cancer development. How cells discriminate physiological from supraphysiological levels of Myc is largely unknown. Here, we show that induction of apoptosis by Myc in breast epithelial cells requires association of Myc with Miz1.
View Article and Find Full Text PDFOncogenic transcription factor Myc deregulates the cell cycle and simultaneously reprograms cellular metabolism to meet the biosynthetic and bioenergetic needs of proliferation. Myc also sensitizes cells to mitochondria-dependent apoptosis. Although metabolic reprogramming has been circumstantially connected to vulnerability to apoptosis, the connecting molecular pathways have remained poorly defined.
View Article and Find Full Text PDF