3 Biotech
November 2022
Immobilization is a key technology that improves the operational stability of enzymes. In this study, alginate-gelatin (Alg-Gel) hydrogel matrix was synthesized and used as immobilization support for lipase (Lip). Enzyme catalyzed ultrasound-assisted hydrolysis of olive oil was also investigated.
View Article and Find Full Text PDFHydrogel-based matrix prepared using biopolymers is a new frontier of emerging platforms for enzyme immobilization for biomedical applications. Catalase (CAT) delivery can be effective in inhibiting reactive oxygen species (ROS)-mediated prolongation of the wound healing process. In this study, to improve CAT stability for effective application, gelatin(Gel)-alginate (Alg) biocompatible hydrogel (Gel-Alg), as immobilization support, was prepared using calcium chloride as an ionic cross-linker.
View Article and Find Full Text PDFNanotechnology is currently a field of endeavour that has reached a maturation phase beyond the initial hypotheses with an undercurrent challenge to optimise the safety, and scalability for production and clinical trials. Lipid-based nanoparticles (LNP), namely solid lipid nanoparticles (SLN) and nanostructured lipid (NLC), carriers are presently among the most attractive and fast-growing areas of research. SLN and NLC are safe, biocompatible nanotechnology-enabled platforms with ubiquitous applications.
View Article and Find Full Text PDFProduction of amylases by fungi under solid-state fermentation is considered the best methodology for commercial scaling that addresses the ever-escalating needs of the worldwide enzyme market. Here response surface methodology (RSM) was used for the optimization of process variables for α-amylase enzyme production from Trichoderma virens using watermelon rinds (WMR) under solid-state fermentation (SSF). The statistical model included four variables, each detected at two levels, followed by model development with partial purification and characterization of α-amylase.
View Article and Find Full Text PDFThe fast progress in nanomedicine and nanoparticles (NP) materials presents unconventional solutions which are expected to revolutionise health care with great potentials including, enhanced efficacy, bioavailability, drug targeting, and safety. This review provides a comprehensive update on widely used organic and inorganic NP with emphasis on the recent development, challenges and future prospective for bio applications where, further investigations into innovative synthesis methodologies, properties and applications of NP would possibly reveal new improved biomedical relevance. NP exhibits exceptional physical and chemical properties due to their high surface area to volume ratio and nanoscale size, which led to breakthroughs in therapeutic, diagnostic and screening techniques repeated line.
View Article and Find Full Text PDFIntroduction And Aims: Polycystic ovary syndrome (PCOS) is a widespread endocrine disorder affecting females. Mechanisms underlying PCOS complicated pathology remain largely unknown, making current treatment only symptomatic. Increasing reports suggest impaired PI3K/AKT/mTOR pathway and tumor necrosis factor-α (TNF-α) levels are involved in cellular proliferation and metabolism-related disorders.
View Article and Find Full Text PDFBackground: Recent studies suggest asthma prevalence in polycystic ovary syndrome (PCOS) patients. This is the first study to explore asthma prevalence among Egyptian PCOS patients. It highlighted common findings in PCOS and asthma.
View Article and Find Full Text PDFArtif Cells Nanomed Biotechnol
December 2019
Enzymes are powerful versatile biocatalysts, however, industrial application of enzymes is usually hampered by their susceptibility. Bio-inspired Eudragit-α-amylase conjugate (E-AC) was proposed as a biocatalyst for various pharmaceutical and industrial applications. In this study, α -Amylase (E.
View Article and Find Full Text PDFOne of the main challenges for successful pharmaceutical application of Catalase (CAT) is maintaining its stability. Physical immobilization of CAT through nano-encapsulation was proposed to resolve this challenge. CAT encapsulating niosomes (e-CAT) were prepared using Brij 30, 52, 76, 92, and 97 in the presence of cholesterol (Ch) by thin film hydration method.
View Article and Find Full Text PDF