Publications by authors named "Heidi L Kenerson"

The liver contains an intricate microstructure that is critical for liver function. Architectural disruption of this spatial structure is pathologic. Unfortunately, 2D histopathology - the gold standard for pathological understanding of many liver diseases - can misrepresent or leave gaps in our understanding of complex 3D structural features.

View Article and Find Full Text PDF

Functional assays on intact tumor biopsies can complement genomics-based approaches for precision oncology, drug testing, and organs-on-chips cancer disease models by capturing key therapeutic response determinants, such as tissue architecture, tumor heterogeneity, and the tumor microenvironment. Most of these assays rely on fluorescent labeling, a semiquantitative method best suited for single-time-point assays or labor-intensive immunostaining analysis. Here, we report integrated aptamer electrochemical sensors for on-chip, real-time monitoring of cytochrome C, a cell death indicator, from intact microdissected tissues with high affinity and specificity.

View Article and Find Full Text PDF
Article Synopsis
  • Metabolic adaptations are crucial for survival, with the mitochondrial calcium uniporter playing a key role in managing energy supply by regulating mitochondrial functions and calcium signaling.
  • The study investigates the effects of uniporter loss and gain on metabolic pathways, revealing that loss of function increases proteins involved in branched-chain amino acid (BCAA) catabolism, while specifically suppressing this pathway in liver cancer cells with high mitochondrial calcium levels.
  • The research also highlights the upregulation of the transcription factor KLF15 due to uniporter loss, linking it to changes in liver metabolism and potential complications like hyperammonemia in cancer patients.
View Article and Find Full Text PDF

Intrahepatic cholangiocarcinoma (ICC) is an aggressive bile duct malignancy that frequently exhibits isocitrate dehydrogenase () mutations. Mutant IDH (IDHm) ICC is dependent on SRC kinase for growth and survival and is hypersensitive to inhibition by dasatinib, but the molecular mechanism underlying this sensitivity is unclear. We found that dasatinib reduced p70 S6 kinase (S6K) and ribosomal protein S6 (S6), leading to substantial reductions in cell size and de novo protein synthesis.

View Article and Find Full Text PDF

Functional assays on intact tumor biopsies can potentially complement and extend genomics-based approaches for precision oncology, drug testing, and organs-on-chips cancer disease models by capturing key determinants of therapeutic response, such as tissue architecture, tumor heterogeneity, and the tumor microenvironment. Currently, most of these assays rely on fluorescent labeling, a semi-quantitative method best suited to be a single-time-point terminal assay or labor-intensive terminal immunostaining analysis. Here, we report integrated aptamer electrochemical sensors for on-chip, real-time monitoring of increases of cytochrome C, a cell death indicator, from intact microdissected tissues with high affinity and specificity.

View Article and Find Full Text PDF
Article Synopsis
  • The DNAJ-PKAc fusion kinase is a characteristic feature of fibrolamellar carcinoma (FLC), a type of liver cancer known for its resistance to traditional chemotherapy treatments.
  • Research shows that DNAJ-PKAc can phosphorylate various proteins, including BAG2, which is linked to anti-apoptotic processes and is found in higher levels in FLC tissue samples.
  • The study suggests that targeting BAG2 could help overcome chemoresistance, as using the Bcl-2 inhibitor navitoclax increases cancer cell sensitivity to the chemotherapy drug etoposide in cases with DNAJ-PKAc.
View Article and Find Full Text PDF

The DNAJ-PKAc fusion kinase is a defining feature of the adolescent liver cancer fibrolamellar carcinoma (FLC). A single lesion on chromosome 19 generates this mutant kinase by creating a fused gene encoding the chaperonin binding domain of Hsp40 (DNAJ) in frame with the catalytic core of protein kinase A (PKAc). FLC tumors are notoriously resistant to standard chemotherapies.

View Article and Find Full Text PDF

Although it can promote effector T-cell function, the summative effect of interleukin-10 (IL-10) in the tumor microenvironment (TME) appears to be suppressive; therefore, blocking this critical regulatory cytokine has therapeutic potential to enhance antitumor immune function. As macrophages efficiently localize to the TME, we hypothesized that they could be used as a delivery vehicle for drugs designed to block this pathway. To test our hypothesis, we created and evaluated genetically engineered macrophages (GEMs) that produce an IL-10-blocking antibody (αIL-10).

View Article and Find Full Text PDF

Genetic alterations that activate protein kinase A (PKA) are found in many tumor types. Yet, their downstream oncogenic signaling mechanisms are poorly understood. We used global phosphoproteomics and kinase activity profiling to map conserved signaling outputs driven by a range of genetic changes that activate PKA in human cancer.

View Article and Find Full Text PDF

Objective: Programmed cell death protein 1 (PD-1) checkpoint inhibition and adoptive cellular therapy have had limited success in patients with microsatellite stable colorectal cancer liver metastases (CRLM). We sought to evaluate the effect of interleukin 10 (IL-10) blockade on endogenous T cell and chimeric antigen receptor T (CAR-T) cell antitumour function in CRLM slice cultures.

Design: We created organotypic slice cultures from human CRLM (n=38 patients' tumours) and tested the antitumour effects of a neutralising antibody against IL-10 (αIL-10) both alone as treatment and in combination with exogenously administered carcinoembryonic antigen (CEA)-specific CAR-T cells.

View Article and Find Full Text PDF

Precision-cut human liver slice cultures (PCLS) have become an important alternative immunological platform in preclinical testing. To further evaluate the capacity of PCLS, we investigated the innate immune response to TLR3 agonist (poly-I:C) and TLR4 agonist (LPS) using normal and diseased liver tissue. Pathological liver tissue was obtained from patients with active chronic HCV infection, and patients with former chronic HCV infection cured by recent Direct-Acting Antiviral (DAA) drug therapy.

View Article and Find Full Text PDF
Article Synopsis
  • Hepatocellular carcinoma (HCC) is a serious global health issue with few effective treatments for advanced stages, prompting research into targeted therapies like α-therapy which involves delivering α-particle-emitting radionuclides, such as Th, specifically to cancer cells.
  • The study focuses on developing a Th-labeled antibody (Th-octapa-αGPC3) that targets Glypican-3 (GPC3), a protein often overexpressed in HCC, showing high efficiency in labeling and maintaining stability in vitro.
  • In preclinical tests involving mice with HCC, Th-octapa-αGPC3 effectively accumulated in tumors while sparing normal tissue, leading to a significant tumor reduction at specific
View Article and Find Full Text PDF

The impact of systemic therapy on the tumor microenvironment has been difficult to study in human solid tumors. Our protocol describes steps for establishing slice cultures to investigate response to chemotherapies, immunotherapies, or adoptive cell therapies. Endpoints include changes in viability, histology, live-cell imaging, and multi-omics analyses.

View Article and Find Full Text PDF

All-trans-retinoic acid (atRA), the active metabolite of vitamin A, has antifibrogenic properties in vitro and in animal models. Liver vitamin A homeostasis is maintained by cell-specific enzymatic activities including storage in hepatic stellate cells (HSCs), secretion into circulation from hepatocytes, and formation and clearance of atRA. During chronic liver injury, HSC activation is associated with a decrease in liver retinyl esters and retinol concentrations.

View Article and Find Full Text PDF

Metastatic colorectal cancer (CRC) is a major cause of cancer-related death, and incidence is rising in younger populations (younger than 50 years). Current chemotherapies can achieve response rates above 50%, but immunotherapies have limited value for patients with microsatellite-stable (MSS) cancers. The present study investigates the impact of chemotherapy on the tumor immune microenvironment.

View Article and Find Full Text PDF
Article Synopsis
  • The study looked at how the environment around tumors affects cancer biology, using special slices of tumors to test drug reactions.
  • Researchers took tumor pieces from patients' livers and grew them in a lab to see how they behave and how this relates to the cancer's characteristics.
  • They found that these tumor slices showed different reactions depending on how serious the cancer was and could help understand how tumors might respond to treatments.
View Article and Find Full Text PDF

Phosphoproteins are the key indicators of signaling network pathway activation. Many disease treatment therapies are designed to inhibit these pathways and effective diagnostics are required to evaluate the efficacy of these treatments. Phosphoprotein IHC have been impractical for diagnostics due to inconsistent results occurring from technical limitations.

View Article and Find Full Text PDF

Organotypic tumor slices represent a physiologically-relevant culture system for studying the tumor microenvironment. Systematic characterization of the tumor slice culture system will enable its effective application for translational research. Here, using flow cytometry-based immunophenotyping, we performed a comprehensive characterization of the immune cell composition in organotypic tumor slices prepared from four syngeneic mouse tumor models and a human liver tumor.

View Article and Find Full Text PDF

Fibrolamellar hepatocellular carcinomas (FL-HCCs) possess a unique mutation that encodes a chimeric form of protein kinase A (DNAJ-PKAc), which includes a chaperonin binding domain. DNAJ-PKAc retains most of the biochemical properties of the native enzyme, however, and activity remains dependent on cAMP. We thus speculated that a persistent source of cAMP is necessary to promote FL-HCC carcinogenesis, and that neurotensin (NTS) may drive cAMP production in this setting, given that NS serum and tumor levels are elevated in many patients with FL-HCC.

View Article and Find Full Text PDF

Fibrolamellar carcinoma (FLC) is a rare liver cancer. FLCs uniquely produce DNAJ-PKAc, a chimeric enzyme consisting of a chaperonin-binding domain fused to the Cα subunit of protein kinase A. Biochemical analyses of clinical samples reveal that a unique property of this fusion enzyme is the ability to recruit heat shock protein 70 (Hsp70).

View Article and Find Full Text PDF

New Findings: What is the central question of this study? Whether chronic oral rapamycin promotes beneficial effects on glucose/lipid metabolism and energy balance when administered to mice with an obesogenic diet rich in saturated fat and sucrose has not been explored. What is the main finding and its importance? Chronic oral rapamycin reduces body weight and fat gain, improves insulin sensitivity and reduces hepatic steatosis when administered to mice with a high-fat, high-sucrose diet. In addition, we make the new observation that there appear to be tissue-specific effects of rapamycin.

View Article and Find Full Text PDF

With the widespread adoption of molecular profiling in clinical oncology practice, many physicians are faced with making therapeutic decisions based upon isolated genomic alterations. For example, epidermal growth factor receptor tyrosine kinase inhibitors (TKIs) are effective in EGFR-mutant non-small cell lung cancers (NSCLC) while anti-EGFR monoclonal antibodies are ineffective in Ras-mutant colorectal cancers. The matching of mutations with drugs aimed at their respective gene products represents the current state of "precision" oncology.

View Article and Find Full Text PDF

The liver is the central metabolic organ in the human body, and also plays an essential role in innate and adaptive immunity. While mouse models offer significant insights into immune-inflammatory liver disease, human immunology differs in important respects. It is not easy to address those differences experimentally.

View Article and Find Full Text PDF

Background: Fibrolamellar hepatocellular carcinoma (FL-HCC) affects children without underlying liver disease. A consistent mutation in FL-HCCs leads to fusion of the genes encoding a heat shock protein (DNAJB1) and the catalytic subunit of protein kinase A (PRKACA). We sought to characterize the resultant chimeric protein and its effects in FL-HCC.

View Article and Find Full Text PDF

Background: The potential health effects of polybrominated diphenyl ethers (PBDEs) that are widely used as flame-retardants in consumer products have been attributed, in part, to their endocrine disrupting properties. The purpose of this study is to examine the in vivo effects of an early exposure to PBDEs on the development of insulin resistance in mice.

Results: The metabolic consequences of BDE-47 in mice with varying insulin sensitivities secondary to liver-specific activation of Akt (Pten (fl/fl);Alb (Cre)) and mTORC1 (Tsc1 (fl/fl);Alb (Cre)) as well as wild-type littermates, were studied.

View Article and Find Full Text PDF