Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key regulator of oxidative stress and cellular repair and can be activated through inhibition of its cytoplasmic repressor, Kelch-like ECH-associated protein 1 (Keap1). Several small molecule disrupters of the Nrf2-Keap1 complex have recently been tested and/or approved for human therapeutic use but lack either potency or selectivity. The main goal of our work was to develop a potent, selective activator of NRF2 as protection against oxidative stress.
View Article and Find Full Text PDFJ Med Chem
April 2016
KEAP1 is the key regulator of the NRF2-mediated cytoprotective response, and increasingly recognized as a target for diseases involving oxidative stress. Pharmacological intervention has focused on molecules that decrease NRF2-ubiquitination through covalent modification of KEAP1 cysteine residues, but such electrophilic compounds lack selectivity and may be associated with off-target toxicity. We report here the first use of a fragment-based approach to directly target the KEAP1 Kelch-NRF2 interaction.
View Article and Find Full Text PDFChronic inflammation is a major contributing factor in the pathogenesis of many age-associated diseases. One central protein that regulates inflammation is NF-κB, the activity of which is modulated by post-translational modifications as well as by association with co-activator and co-repressor proteins. SIRT1, an NAD(+)-dependent protein deacetylase, has been shown to suppress NF-κB signaling through deacetylation of the p65 subunit of NF-κB resulting in the reduction of the inflammatory responses mediated by this transcription factor.
View Article and Find Full Text PDF