Process analytical technologies (PAT) are used within industry to give real-time measurements of critical quality parameters, ultimately improving the quality by design (QbD) of the final product and reducing manufacturing costs. Spectroscopic and spectrophotometric methods are readily employed within PAT due to their ease of use, compatibility toward a range of sample types, robustness, and multiplexing capabilities. We have developed a UV resonance Raman (UVRR) spectroscopy approach to quantify industrially relevant biotransformations accurately, focusing on nitrile metabolizing enzymes: nitrile hydratase (NHase) and amidase versus nitrilase activity.
View Article and Find Full Text PDFFor enzyme-catalysed biotransformations, continuous in situ detection methods minimise the need for sample manipulation, ultimately leading to more accurate real-time kinetic determinations of substrate(s) and product(s). We have established for the first time an on-line, real-time quantitative approach to monitor simultaneously multiple biotransformations based on UV resonance Raman (UVRR) spectroscopy. To exemplify the generality and versatility of this approach, multiple substrates and enzyme systems were used involving nitrile hydratase (NHase) and xanthine oxidase (XO), both of which are of industrial and biological significance, and incorporate multistep enzymatic conversions.
View Article and Find Full Text PDFOne of the current limitations surrounding surface-enhanced Raman scattering (SERS) is the perceived lack of reproducibility. SERS is indeed challenging, and for analyte detection, it is vital that the analyte interacts with the metal surface. However, as this is analyte dependent, there is not a single set of SERS conditions that are universal.
View Article and Find Full Text PDFFlavin-dependent halogenases are potentially useful biocatalysts for the regioselective halogenation of aromatic compounds. Haloaromatic compounds can be utilised in the synthesis and biosynthesis of pharmaceuticals and other valuable products. Here we report the first X-ray crystal structure of a tryptophan 6-halogenase (SttH), which enabled key residues that contribute to the regioselectivity in tryptophan halogenases to be identified.
View Article and Find Full Text PDF