Manipulating gut microbes may improve mental health. Prebiotics are indigestible compounds that increase the growth and activity of health-promoting microorganisms, yet few studies have examined how prebiotics affect CNS function. Using an acute inescapable stressor known to produce learned helplessness behaviours such as failure to escape and exaggerated fear, we tested whether early life supplementation of a blend of two prebiotics, galactooligosaccharide (GOS) and polydextrose (PDX), and the glycoprotein lactoferrin (LAC) would attenuate behavioural and biological responses to stress later in life.
View Article and Find Full Text PDFThe medullary nucleus raphe pallidus (RPa) mediates several autonomic responses evoked by acute stress exposure, including tachycardia and hyperthermia. The present study assessed whether the RPa contributes to the decline/habituation of these responses observed during repeated audiogenic stress. Adult male rats were implanted with cannulae aimed at the RPa, and abdominal E-mitters that wirelessly acquire heart rate and core body temperature.
View Article and Find Full Text PDFA likely adaptive process mitigating the effects of chronic stress is the phenomenon of stress habituation, which frequently reduces multiple stress-evoked responses to the same (homotypic) stressor experienced repeatedly. The current studies investigated putative brain circuits that may coordinate the reduction of stress-related responses associated with stress habituation, a process that is inadequately understood. Initially, two rat premotor regions that respectively regulate neuroendocrine (medial parvicellular region of the paraventricular hypothalamic nucleus [PaMP]) and autonomic (rostral medullary raphe pallidus [RPa]) responses were targeted with distinguishable retrograde tracers.
View Article and Find Full Text PDFRelapse of previously extinguished fear presents a significant, pervasive obstacle to the successful long-term treatment of anxiety and trauma-related disorders. Thus, identification of a novel means to enhance fear extinction to stand the passage of time and generalize across contexts is of the utmost importance. Acute bouts of exercise can be used as inexpensive, noninvasive treatment strategies to reduce anxiety, and have been shown to enhance memory for extinction when performed in close temporal proximity to the extinction session.
View Article and Find Full Text PDFEmerging evidence indicates that adenosine is a major regulator of striatum activity, in part, through the antagonistic modulation of dopaminergic function. Exercise can influence adenosine and dopamine activity, which may subsequently promote plasticity in striatum adenosine and dopamine systems. Such changes could alter activity of medium spiny neurons and impact striatum function.
View Article and Find Full Text PDFUnderstanding potential sex differences in repeated stress-induced hypothalamic-pituitary-adrenocortical (HPA) axis habituation could provide insight into the sex-biased prevalence of certain affective disorders such as anxiety and depression. Therefore in these studies, male and female rats were exposed to 30 min of either audiogenic or restraint stress daily for 10 days in order to determine whether sex regulates the extent to which HPA axis hormone release is attenuated upon repeated homotypic stressor presentation. In response to the initial exposure, both stressors robustly increased plasma concentrations of both adrenocorticotropic hormone (ACTH) and corticosterone (CORT) in both sexes.
View Article and Find Full Text PDFAccumulating evidence indicates that regular physical exercise benefits health in part by counteracting some of the negative physiological impacts of stress. While some studies identified reductions in some measures of acute stress responses with prior exercise, limited data were available concerning effects on cardiovascular function, and reported effects on hypothalamic-pituitary-adrenocortical (HPA) axis responses were largely inconsistent. Given that exposure to repeated or prolonged stress is strongly implicated in the precipitation and exacerbation of illness, we proposed the novel hypothesis that physical exercise might facilitate adaptation to repeated stress, and subsequently demonstrated significant enhancement of both HPA axis (glucocorticoid) and cardiovascular (tachycardia) response habituation to repeated noise stress in rats with long-term access to running wheels compared to sedentary controls.
View Article and Find Full Text PDFExperiencing stress can be physically and psychologically debilitating to an organism. Women have a higher prevalence of some stress-related mental illnesses, the reasons for which are unknown. These experiments explore differential HPA axis hormone release in male and female rats following acute stress.
View Article and Find Full Text PDFSerotonin (5-HT) is implicated in the development of stress-related mood disorders in humans. Physical activity reduces the risk of developing stress-related mood disorders, such as depression and anxiety. In rats, 6 weeks of wheel running protects against stress-induced behaviors thought to resemble symptoms of human anxiety and depression.
View Article and Find Full Text PDFPhysical activity reduces the incidence and severity of psychiatric disorders such as anxiety and depression. Similarly, voluntary wheel running produces anxiolytic- and antidepressant-like effects in rodent models. The specific neurobiological mechanisms underlying the beneficial properties of exercise, however, remain unclear.
View Article and Find Full Text PDFThere is a greater prevalence of neuroinflammatory diseases in females than males. Microglia, the major immunocompetent cells of the central nervous system, play a key role in neuroinflammation. We aimed to determine if inherent differences in toll-like receptor 4 mediated pro-inflammatory response in glia could possibly contribute to the skewed female prevalence of neuroinflammatory disorders.
View Article and Find Full Text PDFPrevious research has suggested that sensory areas may play a role in adaptation to repeated stress. The auditory cortex was the target of the present studies because it is a major projection area of the auditory thalamus, where functional inactivation disrupts stress habituation to repeated loud noise. Large bilateral excitotoxic lesions of the auditory cortex were made in male rats 2 weeks prior to (Experiment 1) or a few days after (Experiment 2) a 5 day 30 min repeated 95 dBA noise or no noise regimen.
View Article and Find Full Text PDFWe have previously found that healthy aged rats are more likely to suffer profound memory impairments following a severe bacterial infection than are younger adult rats. Such a peripheral challenge is capable of producing a neuroinflammatory response, and in the aged brain this response is exaggerated and prolonged. Normal aging primes, or sensitizes, microglia, and this appears to be the source of this amplified inflammatory response.
View Article and Find Full Text PDFStress often negatively impacts physical and mental health but it has been suggested that voluntary physical activity may benefit health by reducing some of the effects of stress. The present experiments tested whether voluntary exercise can reduce heart rate, core body temperature and locomotor activity responses to acute (novelty or loud noise) or repeated stress (loud noise). After 6 weeks of running-wheel access, rats exposed to a novel environment had reduced heart rate, core body temperature, and locomotor activity responses compared to rats housed under sedentary conditions.
View Article and Find Full Text PDFThe mesolimbic reward pathway is implicated in stress-related psychiatric disorders and is a potential target of plasticity underlying the stress resistance produced by repeated voluntary exercise. It is unknown, however, whether rats find long-term access to running wheels rewarding, or if repeated voluntary exercise reward produces plastic changes in mesolimbic reward neurocircuitry. In the current studies, young adult, male Fischer 344 rats allowed voluntary access to running wheels for 6 weeks, but not 2 weeks, found wheel running rewarding, as measured by conditioned place preference (CPP).
View Article and Find Full Text PDFExposure to stress reliably activates the hypothalamo-pituitary-adrenocortical (HPA) axis response in rodents, which is significantly reduced (habituated) following repeated exposures. In the current study, it was first established that HPA axis response habituation to repeated loud noise lasted for at least 4 weeks in rats. In the next experiment, a contextual extinction procedure following repeated loud noise exposures failed to restore the habituated HPA axis response.
View Article and Find Full Text PDFStress exacerbates several physical and psychological disorders. Voluntary exercise can reduce susceptibility to many of these stress-associated disorders. In rodents, voluntary exercise can reduce hypothalamic-pituitary-adrenocortical (HPA) axis activity in response to various stressors as well as upregulate several brain neurotrophins.
View Article and Find Full Text PDFThe hippocampal formation is a highly plastic brain region that is sensitive to stress. It receives extensive noradrenergic projections, and noradrenaline is released in the hippocampus in response to stressor exposure. The hippocampus expresses particularly high levels of the alpha(1D) adrenergic receptor (ADR) and we have previously demonstrated that alpha(1d) ADR mRNA expression in the rat hippocampus is modulated by corticosterone.
View Article and Find Full Text PDFExposures to predator odors are very effective methods to evoke a variety of stress responses in rodents. We have previously found that ferret odor exposure leads to changes in endocrine hormones (corticosterone and ACTH) and behavior. To distinguish the contributions of the main and accessory olfactory systems in these responses, studies were designed to interfere with these two systems either independently, or simultaneously.
View Article and Find Full Text PDFInvestigations of the neural pathways associated with responses to predators have implicated the medial amygdala (MeA) as an important region involved in defensive behaviors. To our knowledge, however, the involvement of the MeA in neuroendocrine responses to predator odor exposure has not been investigated. Therefore, the present study examined the effects of MeA disruption in rats exposed to ferret or control odor on hypothalamo-pituitary-adrenocortical (HPA) axis activation.
View Article and Find Full Text PDFAlthough habituation to stress is a widely observed adaptive mechanism in response to repeated homotypic challenge exposure, its brain location and mechanism of plasticity remains elusive. And while habituation-related plasticity has been suggested to take place in central limbic regions, recent evidence suggests that sensory sites may provide the underlying substrate for this function. For instance, several brainstem, midbrain, thalamic, and/or cortical auditory processing areas, among others, could support habituation-related plasticity to repeated loud noise exposures.
View Article and Find Full Text PDFVoluntary exercise is associated with the prevention and treatment of numerous physical and psychological illnesses, yet the mechanisms by which it confers this protection remain unclear. In contrast, stress, particularly under conditions of prolonged or repeated exposure when glucocorticoid levels are consistently elevated, can have a devastating impact on health. It has been suggested that the benefits of physical exercise may lie in an ability to reduce some of the more deleterious health effects of stress and stress hormones.
View Article and Find Full Text PDFRepeated exposure to a moderately intense stressor typically produces attenuation of the hypothalamic-pituitary-adrenal (HPA) axis response (habituation) on re-presentation of the same stressor; however, if a novel stressor is presented to the same animals, the HPA axis response may be augmented (sensitization). The extent to which this adaptation is also evident within neural activity patterns is unknown. This study tested whether repeated ferret odor (FO) exposure, a moderately intense psychological stressor for rats, leads to both same-stressor habituation and novel-stressor sensitization of the HPA axis response and neuronal activity as determined by immediate early gene induction (c-fos mRNA).
View Article and Find Full Text PDFWe have shown previously that unconditioned stressors inhibit neurons of the lateral/capsular division of the central nucleus of the amygdala (CEAl/c) and oval division of the bed nucleus of the stria terminalis (BSTov), which form part of the central extended amygdala. The current study investigated whether conditioned fear inhibits c-fos mRNA expression in these regions. Male rats were trained either to associate a visual stimulus (light) with footshock or were exposed to the light alone.
View Article and Find Full Text PDFThe hippocampal formation receives extensive noradrenergic projections and expresses high levels of mineralocorticoid (MR) and glucocorticoid (GR) receptors. Considerable evidence suggests that the noradrenergic system influences hippocampal corticosteroid receptors. However, there is relatively little data describing the influence of glucocorticoids on noradrenergic receptors in the hippocampal formation.
View Article and Find Full Text PDF