Norbin (Neurochondrin, NCDN) is a G protein-coupled receptor (GPCR) adaptor protein known for its importance in neuronal function. Norbin works by binding to numerous GPCRs, controlling their steady-state trafficking and sometimes their agonist-induced internalization, as well as their signaling. We recently showed that Norbin is expressed in neutrophils, limits the surface levels of the GPCRs C5aR1 and CXCR4 in neutrophils, and suppresses neutrophil-mediated innate immunity.
View Article and Find Full Text PDFRac GTPases are required for neutrophil adhesion and migration, and for the neutrophil effector responses that kill pathogens. These Rac-dependent functions are impaired when neutrophils lack the activators of Rac, Rac-GEFs from the Prex, Vav, and Dock families. In this study, we demonstrate that Tiam1 is also expressed in neutrophils, governing focal complexes, actin cytoskeletal dynamics, polarisation, and migration, in a manner depending on the integrin ligand to which the cells adhere.
View Article and Find Full Text PDFNorbin is an adaptor protein that binds numerous G protein-coupled receptors (GPCRs), is highly expressed in neurons, and is essential for a functioning nervous system in rodent models. Yet, beyond its control of neurite outgrowth and synaptic plasticity, few cellular roles of Norbin have been investigated to date. Furthermore, while Norbin is known to regulate the steady-state cell surface levels of several GPCRs, only in one case has the protein been shown to control the agonist-induced receptor internalisation which serves to attenuate GPCR signalling.
View Article and Find Full Text PDFNorbin (Neurochondrin, NCDN) is a highly conserved 79 kDa adaptor protein that was first identified more than a quarter of a century ago as a gene up-regulated in rat hippocampus upon induction of long-term potentiation. Most research has focussed on the role of Norbin in the nervous system, where the protein is highly expressed. Norbin regulates neuronal morphology and synaptic plasticity, and is essential for normal brain development and homeostasis.
View Article and Find Full Text PDFIntroduction: Rac-GTPases and their Rac-GEF activators play important roles in neutrophil-mediated host defence. These proteins control the adhesion molecules and cytoskeletal dynamics required for neutrophil recruitment to inflamed and infected organs, and the neutrophil effector responses that kill pathogens.
Methods: Here, we used live cell TIRF-FRET imaging in neutrophils from Rac-FRET reporter mice with deficiencies in the Rac-GEFs Dock2, Tiam1 or Prex1/Vav1 to evaluate if these proteins activate spatiotemporally distinct pools of Rac, and to correlate patterns of Rac activity with the neutrophil responses they control.
Host defense against bacterial and fungal infections diminishes with age. In humans, impaired neutrophil responses are thought to contribute to this decline. However, it remains unclear whether neutrophil responses are also impaired in old mice.
View Article and Find Full Text PDFTranscriptional and proteomic profiling of individual cells have revolutionized interpretation of biological phenomena by providing cellular landscapes of healthy and diseased tissues. These approaches, however, do not describe dynamic scenarios in which cells continuously change their biochemical properties and downstream 'behavioural' outputs. Here we used 4D live imaging to record tens to hundreds of morpho-kinetic parameters describing the dynamics of individual leukocytes at sites of active inflammation.
View Article and Find Full Text PDFP-Rex1 is a guanine-nucleotide exchange factor (GEF) that activates Rac-type small G proteins in response to the stimulation of a range of receptors, particularly G protein-coupled receptors (GPCRs), to control cytoskeletal dynamics and other Rac-dependent cell responses. P-Rex1 is mainly expressed in leukocytes and neurons. Whereas its roles in leukocytes have been studied extensively, relatively little is known about its functions in neurons.
View Article and Find Full Text PDFAssessing drug response within live native tissue provides increased fidelity with regards to optimizing efficacy while minimizing off-target effects. Here, using longitudinal intravital imaging of a Rac1-Förster resonance energy transfer (FRET) biosensor mouse coupled with in vivo photoswitching to track intratumoral movement, we help guide treatment scheduling in a live breast cancer setting to impair metastatic progression. We uncover altered Rac1 activity at the center versus invasive border of tumors and demonstrate enhanced Rac1 activity of cells in close proximity to live tumor vasculature using optical window imaging.
View Article and Find Full Text PDFStreptococcal pneumonia is a worldwide health problem that kills ∼2 million people each year, particularly young children, the elderly, and immunosuppressed individuals. Alveolar macrophages and neutrophils provide the early innate immune response to clear pneumococcus from infected lungs. However, the level of neutrophil involvement is context dependent, both in humans and in mouse models of the disease, influenced by factors such as bacterial load, age, and coinfections.
View Article and Find Full Text PDFDysregulation of glucose homeostasis leading to metabolic syndrome and type 2 diabetes is the cause of an increasing world health crisis. New intriguing roles have emerged for Rho family GTPases and their Rho guanine nucleotide exchange factor (GEF) activators in the regulation of glucose homeostasis. This review summates the current knowledge, focusing in particular on the roles of Rho GEFs in the processes of glucose-stimulated insulin secretion by pancreatic β cells and insulin-stimulated glucose uptake into skeletal muscle and adipose tissues.
View Article and Find Full Text PDFThe Rac-GEF, P-Rex1, activates Rac1 signaling downstream of G protein-coupled receptors and PI3K. Increased P-Rex1 expression promotes melanoma progression; however, its role in breast cancer is complex, with differing reports of the effect of its expression on disease outcome. To address this we analyzed human databases, undertook gene array expression analysis, and generated unique murine models of P-Rex1 gain or loss of function.
View Article and Find Full Text PDFEur J Clin Invest
November 2018
Rac-GTPases and their Rac-GEF activators play important roles in the recruitment and host defence functions of neutrophils. These proteins control the activation of adhesion molecules and the cytoskeletal dynamics that enable the adhesion, migration and tissue recruitment of neutrophils. They also regulate the effector functions that allow neutrophils to kill bacterial and fungal pathogens, and to clear debris.
View Article and Find Full Text PDFThe small GTPase RhoA is involved in a variety of fundamental processes in normal tissue. Spatiotemporal control of RhoA is thought to govern mechanosensing, growth, and motility of cells, while its deregulation is associated with disease development. Here, we describe the generation of a RhoA-fluorescence resonance energy transfer (FRET) biosensor mouse and its utility for monitoring real-time activity of RhoA in a variety of native tissues in vivo.
View Article and Find Full Text PDFPurpose Of Review: This review describes the essential roles of platelets in neutrophil recruitment from the bloodstream into inflamed and infected tissues, with a focus on recent findings.
Recent Findings: Platelets are required for the recruitment of neutrophils to sites of inflammation and infection. They fulfil this role largely by enabling contacts of circulating neutrophils with the inflamed blood vessel wall prior to extravasation.
PREX2 (phosphatidylinositol-3,4,5-triphosphate-dependent Rac-exchange factor 2) is a PTEN (phosphatase and tensin homolog deleted on chromosome 10) binding protein that is significantly mutated in cutaneous melanoma and pancreatic ductal adenocarcinoma. Here, genetic and biochemical analyses were conducted to elucidate the nature and mechanistic basis of PREX2 mutation in melanoma development. By generating an inducible transgenic mouse model we showed an oncogenic role for a truncating PREX2 mutation (PREX2(E824)*) in vivo in the context of mutant NRAS.
View Article and Find Full Text PDFP-Rex1 is a guanine-nucleotide exchange factor (GEF) that activates the small G protein (GTPase) Rac1 to control Rac1-dependent cytoskeletal dynamics, and thus cell morphology. Three mechanisms of P-Rex1 regulation are currently known: (i) binding of the phosphoinositide second messenger PIP3, (ii) binding of the Gβγ subunits of heterotrimeric G proteins, and (iii) phosphorylation of various serine residues. Using recombinant P-Rex1 protein to search for new binding partners, we isolated the G-protein-coupled receptor (GPCR)-adaptor protein Norbin (Neurochondrin, NCDN) from mouse brain fractions.
View Article and Find Full Text PDFPurpose Of Review: The review describes the roles of Rho- and Rap-guanosine triphosphatases (GTPases) and of their activators, guanine-nucleotide exchange factors (GEFs), and inhibitors, GTPase activating proteins (GAPs), in neutrophil recruitment from the blood stream into inflamed tissues, with a focus on recently identified roles in neutrophils, endothelial cells, and platelets.
Recent Findings: Recent studies have identified important roles of Rho- and Rap-GTPases, and of their GEFs and GAPs, in the neutrophil recruitment cascade. These proteins control the upregulation and/or activation of adhesion molecules on the surface of neutrophils, endothelial cells, and platelets, and they alter cell/cell adhesion in the vascular endothelium.
The P-Rex family are Dbl-type guanine-nucleotide exchange factors for Rac family small G proteins. They are distinguished from other Rac-GEFs through their synergistic mode of activation by the lipid second messenger phosphatidyl inositol (3,4,5) trisphosphate and the Gβγ subunits of heterotrimeric G proteins, thus acting as coincidence detectors for phosphoinositide 3-kinase and G protein coupled receptor signaling. Work in genetically-modified mice has shown that P-Rex1 has physiological importance in the inflammatory response and the migration of melanoblasts during development, whereas P-Rex2 controls the dendrite morphology of cerebellar Purkinje neurons as well as glucose homeostasis in liver and adipose tissue.
View Article and Find Full Text PDFThe small GTPase Rac is required for neutrophil recruitment during inflammation, but its guanine-nucleotide exchange factor (GEF) activators seem dispensable for this process, which led us to investigate the possibility of cooperation between Rac-GEF families. Thioglycollate-induced neutrophil recruitment into the peritoneum was more severely impaired in P-Rex1(-/-) Vav1(-/-) (P1V1) or P-Rex1(-/-) Vav3(-/-) (P1V3) mice than in P-Rex null or Vav null mice, suggesting cooperation between P-Rex and Vav Rac-GEFs in this process. Neutrophil transmigration and airway infiltration were all but lost in P1V1 and P1V3 mice during lipopolysaccharide (LPS)-induced pulmonary inflammation, with altered intercellular adhesion molecule 1-dependent slow neutrophil rolling and strongly reduced L- and E-selectin-dependent adhesion in airway postcapillary venules.
View Article and Find Full Text PDFThe small G protein family Rac has numerous regulators that integrate extracellular signals into tight spatiotemporal maps of its activity to promote specific cell morphologies and responses. Here, we have generated a mouse strain, Rac-FRET, which ubiquitously expresses the Raichu-Rac biosensor. It enables FRET imaging and quantification of Rac activity in live tissues and primary cells without affecting cell properties and responses.
View Article and Find Full Text PDFP-Rex1 is a GEF (guanine-nucleotide-exchange factor) for the small G-protein Rac that is activated by PIP3 (phosphatidylinositol 3,4,5-trisphosphate) and Gβγ subunits and inhibited by PKA (protein kinase A). In the present study we show that PP1α (protein phosphatase 1α) binds P-Rex1 through an RVxF-type docking motif. PP1α activates P-Rex1 directly in vitro, both independently of and additively to PIP3 and Gβγ.
View Article and Find Full Text PDFCAPRI is a member of the GAP1 family of GTPase-activating proteins (GAPs) for small G proteins. It is known to function as an amplitude sensor for intracellular Ca(2+) levels stimulated by extracellular signals and has a catalytic domain with dual RasGAP and RapGAP activities. Here, we have investigated the mechanism that switches CAPRI between its two GAP activities.
View Article and Find Full Text PDFG protein-coupled receptor (GPCR) activation elicits neutrophil responses such as chemotaxis and reactive oxygen species (ROS) formation, which depend on the small G protein Rac and are essential for host defense. P-Rex and Vav are two families of guanine-nucleotide exchange factors (GEFs) for Rac, which are activated through distinct mechanisms but can both control GPCR-dependent neutrophil responses. It is currently unknown whether they play specific roles or whether they can compensate for each other in controlling these responses.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2008
The small GTPase Rac controls cell morphology, gene expression, and reactive oxygen species formation. Manipulations of Rac activity levels in the cerebellum result in motor coordination defects, but activators of Rac in the cerebellum are unknown. P-Rex family guanine-nucleotide exchange factors activate Rac.
View Article and Find Full Text PDF