High rates of antimicrobial resistance and formation of biofilms makes treatment of catheter-associated urinary tract infections (CAUTI) particularly challenging. CAUTI affect 1 million patients per year in the United States and are associated with morbidity and mortality, particularly as an etiology for sepsis. Phage have been proposed as a potential therapeutic option.
View Article and Find Full Text PDFBackground: As more left ventricular-assist devices (LVADs) are implanted, multidrug-resistant LVAD infections are becoming increasingly common, partly due to bacterial biofilm production. To aid in developing bacteriophage therapy for LVAD infections, we have identified the most common bacterial pathogens that cause LVAD driveline infections (DLIs) in our heart transplant referral center.
Materials And Methods: We studied a retrospective cohort of patients who received LVADs from November 2003 to August 2017 to identify the common causative organisms of LVAD infection.
The human gastrointestinal mucosal surface consists of a eukaryotic epithelium, a prokaryotic microbiota, and a carbohydrate-rich interface that separates them. In the gastrointestinal tract, the interaction of bacteriophages (phages) and their prokaryotic hosts influences the health of the mammalian host, especially colonization with invasive pathobionts. Antibiotics may be used, but they also kill protective commensals.
View Article and Find Full Text PDFThe continued rise in antibiotic resistance is precipitating a medical crisis. Bacteriophage (phage) has been hailed as one possible therapeutic option to augment the efficacy of antibiotics. However, only a few studies have addressed the synergistic relationship between phage and antibiotics.
View Article and Find Full Text PDFPhage therapy requires libraries of well-characterized phages. Here we describe the generation of phage libraries for three target species: , , and . The basic phage characteristics on the isolation host, sequence analysis, growth properties, and host range and virulence on a number of contemporary clinical isolates are presented.
View Article and Find Full Text PDFPolymerase chain reaction (PCR) has been proposed as a method to identify bacteria in clinical samples because it is more sensitive than culture techniques and can produce results rapidly. However, PCR can detect DNA from dead cells and thus cannot distinguish between live and dead cells in a tissue sample. Killed Staphylococcus aureus cells were implanted into the femurs and knee joints of rats to determine the length of time that DNA from dead cells is detectable in a living animal under conditions similar to common orthopedic infections.
View Article and Find Full Text PDFMyxococcus xanthus, a model organism for studies of multicellular behavior in bacteria, moves exclusively on solid surfaces using two distinct but coordinated motility mechanisms. One of these, social (S) motility is powered by the extension and retraction of type IV pili and requires the presence of exopolysaccharides (EPS) produced by neighboring cells. As a result, S motility requires close cell-to-cell proximity and isolated cells do not translocate.
View Article and Find Full Text PDFBackground: Sepsis from bacteremia occurs in 250,000 cases annually in the United States, has a mortality rate as high as 60%, and is associated with a poorer prognosis than localized infection. Because of these high figures, empiric antibiotic administration for patients with systemic inflammatory response syndrome (SIRS) and suspected infection is the second most common indication for antibiotic administration in intensive care units (ICU)s. However, overuse of empiric antibiotics contributes to the development of opportunistic infections, antibiotic resistance, and the increase in multi-drug-resistant bacterial strains.
View Article and Find Full Text PDFMyxobacteria are a highly social group among the delta proteobacteria that display unique multicellular behaviors during their complex life cycle and provide a rare opportunity to study the boundary between single cells and multicellularity. These organisms are also unusual as their entire life cycle is surface associated and includes a number of social behaviors: social gliding and rippling motility, 'wolf-pack'-like predation, and self-organizing complex biostructures, termed fruiting bodies, which are filled with differentiated environmentally resistant spores. Here we present methods for the growth, maintenance, and storage of Myxococcus xanthus, the most commonly studied of the myxobacteria.
View Article and Find Full Text PDFUnlabelled: Clostridium difficile infection (CDI) is dramatically increasing as a cause of antibiotic- and hospital-associated diarrhea worldwide. C. difficile, a multidrug-resistant pathogen, flourishes in the colon after the gut microbiota has been altered by antibiotic therapy.
View Article and Find Full Text PDFEnterococcus faecalis pCF10 transfers at high frequencies upon pheromone induction of the prgQ transfer operon. This operon codes for three cell wall-anchored proteins - PrgA, PrgB (aggregation substance) and PrgC - and a type IV secretion system through which the plasmid is delivered to recipient cells. Here, we defined the contributions of the Prg surface proteins to plasmid transfer, biofilm formation and virulence using the Caenorhabditis elegans infection model.
View Article and Find Full Text PDFThe LuxI/R quorum-sensing system and its associated N-acylated homoserine lactone (AHL) signal is widespread among Gram-negative bacteria. Although inhibition by indole of AHL quorum signalling in Pseudomonas aeruginosa and Acinetobacter oleivorans has been reported previously, it has not been documented among other species. Here, we show that co-culture with wild-type Escherichia coli, but not with E.
View Article and Find Full Text PDFMyxococcus xanthus is a model organism for studying bacterial social behaviors due to its ability to form complex multi-cellular structures. Knowledge of M. xanthus surface gliding motility and the mechanisms that coordinated it are critically important to our understanding of collective cell behaviors.
View Article and Find Full Text PDFThe microbiota of the human lower intestinal tract helps maintain healthy host physiology, for example through nutrient acquisition and bile acid recycling, but specific positive contributions of the oral microbiota to host health are not well established. Nitric oxide (NO) homeostasis is crucial to mammalian physiology. The recently described entero-salivary nitrate-nitrite-nitric oxide pathway has been shown to provide bioactive NO from dietary nitrate sources.
View Article and Find Full Text PDFBackground: Prevention of infection associated with uncemented orthopaedic implants could lead to improved implant stability and better patient outcomes. We hypothesized that coating porous metal implants with antibiotic-containing microspheres would prevent infections in grossly contaminated wounds.
Methods: Bioresorbable polymer microspheres containing tobramycin were manufactured and pressed into porous metal cylinders that were then implanted into radial defects in rabbits.
Virulent Clostridium difficile strains produce toxin A and/or toxin B that are the etiological agents of diarrhea and pseudomembranous colitis. Treatment of C. difficile infections (CDI) has been hampered by resistance to multiple antibiotics, sporulation, emergence of strains with increased virulence, recurrence of the infection, and the lack of drugs that preserve or restore the colonic bacterial flora.
View Article and Find Full Text PDFMyxococcus xanthus cells self-organize into periodic bands of traveling waves, termed ripples, during multicellular fruiting body development and predation on other bacteria. To investigate the mechanistic basis of rippling behavior and its physiological role during predation by this Gram-negative soil bacterium, we have used an approach that combines mathematical modeling with experimental observations. Specifically, we developed an agent-based model (ABM) to simulate rippling behavior that employs a new signaling mechanism to trigger cellular reversals.
View Article and Find Full Text PDFWe describe a patient who developed Corynebacterium striatum native valve endocarditis after receiving two 6-week courses of daptomycin for the treatment of methicillin-resistant Staphylococcus aureus bacteremia and osteomyelitis. The organism exhibited in vitro heteroresistance to daptomycin, with two subpopulations showing daptomycin susceptibility (MIC of ≤ 0.094 μg/ml) and high-level resistance to daptomycin (MIC of ≥ 256 μg/ml).
View Article and Find Full Text PDFUnlabelled: Porphyromonas gingivalis is a Gram-negative anaerobe that resides exclusively in the human oral cavity. Long-term colonization by P. gingivalis requires the bacteria to evade host immune responses while adapting to the changing host physiology and alterations in the composition of the oral microflora.
View Article and Find Full Text PDFThe alarming emergence of hypervirulent strains of Clostridium difficile with increased toxin production, severity of disease, morbidity, and mortality emphasizes the need for a culture method that permits simultaneous isolation and detection of virulent strains. The C. difficile toxins A and B are critical virulence factors, and strains can either be toxin-producing (virulent) or non-toxin-producing (nonvirulent).
View Article and Find Full Text PDFThe incidence of Clostridium difficile infection (CDI) has been increasing within the last decade. Pathogenic strains of C. difficile produce toxin A and/or toxin B, which are important virulence factors in the pathogenesis of this bacterium.
View Article and Find Full Text PDFSocial (S)-motility in Myxococcus xanthus is a flagellum-independent gliding motility system that allows bacteria to move in groups on solid surfaces. S-motility has been shown to require type IV pili (TFP), exopolysaccharide (EPS; a component of fibrils) and lipopolysaccharide (LPS). Previously, information concerning EPS biogenesis in M.
View Article and Find Full Text PDFMyxococcus xanthus is a gliding bacterium that possesses two motility systems, the adventurous (A-motility) and social (S-motility) systems. A-motility is used for individual cell gliding, while S-motility is used for gliding in multicellular groups. Video microscopy studies showed that nla24 cells are non-motile on agar surfaces, suggesting that the nla24 gene product is absolutely required for both A-motility and S-motility under these assay conditions.
View Article and Find Full Text PDFCurr Opin Microbiol
December 2003
A great deal of progress has been made in the studies of fruiting body development and social gliding in Myxocococcus xanthus in the past few years. This includes identification of the bone fide C-signal and a receptor for type IV pili, and development of a model for the mechanism of adventurous gliding motility. It is anticipated that the next few years will see even more progress as the complete genome sequence is available and genomic and proteomic tools are applied to the study of M.
View Article and Find Full Text PDF