Fibroblasts are thought to be key players in the tumor microenvironment. Means to identify and isolate fibroblasts as well as an understanding of their cancer-specific features are essential to dissect their role in tumor biology. To date, the identification of cancer-associated fibroblasts is widely based on generic markers for activated fibroblasts in combination with their origin in tumor tissue.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are specifically loaded with nucleic acids, lipids, and proteins from their parental cell. Therefore, the constitution of EVs reflects the type and status of the originating cell and EVs in melanoma patient's plasma could be indicative for the tumor. Likewise, EVs might influence tumor progression by regulating immune responses.
View Article and Find Full Text PDFJ Extracell Vesicles
February 2016
The surface protein composition of extracellular vesicles (EVs) is related to the originating cell and may play a role in vesicle function. Knowledge of the protein content of individual EVs is still limited because of the technical challenges to analyse small vesicles. Here, we introduce a novel multiplex bead-based platform to investigate up to 39 different surface markers in one sample.
View Article and Find Full Text PDFInteractions of myeloma cells with the bone marrow microenvironment lead to enhanced osteoclast recruitment and impaired osteoblast activity. Recent evidence revealed that the proteasome inhibitor bortezomib stimulates osteoblast differentiation, but the mechanisms are not fully elucidated. We hypothesised that bortezomib could influence osteoblastic differentiation via alteration of vitamin D signalling by blocking the proteasomal degradation of the vitamin D receptor (VDR).
View Article and Find Full Text PDFHeat shock protein 90 (HSP90) binds and stabilizes numerous proteins and kinases essential for myeloma cell survival and proliferation. We and others have recently demonstrated that inhibition of HSP90 by small molecular mass inhibitors induces cell death in multiple myeloma (MM). However, some of the HSP90 inhibitors involved in early clinical trials have shown limited antitumor activity and unfavorable toxicity profiles.
View Article and Find Full Text PDFObjectives: The ubiquitin-proteasome system emerged as a new therapeutic target in cancer treatment. The purpose of this study was to elucidate the effects of the novel proteasome inhibitor BSc2118 on t(4;14) positive and negative multiple myeloma (MM) cells and normal peripheral blood mononuclear cells (PBMNC).
Methods: Human MM cell lines OPM-2, RPMI-8226, and U266 and primary MM cells from bone marrow aspirates were exposed to BSc2118.
Clin Lymphoma Myeloma Leuk
April 2010
Background: Bortezomib is highly effective in multiple myeloma and is widely used in this disease. Recently, an increased incidence of varicella zoster virus (VZV) reactivation was reported in patients with myeloma undergoing bortezomib treatment.
Patients And Methods: We investigated the influence of bortezomib on T-cell subpopulations in 53 patients with myeloma before initiation of bortezomib and during therapy.
Heat shock protein 90 (HSP90) is a promising target for tumor therapy. The novel HSP90 inhibitor NVP-AUY922 has preclinical activity in multiple myeloma, however, little is known about effective combination partners to design clinical studies. Multiple myeloma cell lines, OPM-2, RPMI-8226, U-266, LP-1, MM1.
View Article and Find Full Text PDFBackground: Receptor activator of nuclear factor-kappaB ligand (RANKL) plays a key role in osteoclast activation in myeloma bone disease. The increased expression of RANKL in the bone marrow microenvironment was demonstrated in several studies, but there are only rare data on circulating RANKL levels in patients with multiple myeloma (MM).
Patients And Methods: In the current study, we investigated the clinical significance of serum RANKL levels, using an enzyme-linked immunosorbent assay test that detects both free and osteoprotegerin (OPG)-bound RANKL (total-RANKL, tRANKL) in patients with newly diagnosed MM (n = 93) and monoclonal gammopathy of undetermined significance (MGUS; n = 20) compared with healthy controls (n = 20).
Bronchoalveolar lavage (BAL) is a practicable procedure establishing the etiology of pneumonia. In patients with neutropenia, empirical antimicrobial treatment is mandatory immediately after diagnosis of infection, usually before results of BAL are available. We evaluated the impact of BAL on treatment and outcome of pneumonia in immunocompromised patients with a special regard to neutropenia.
View Article and Find Full Text PDFMultiple myeloma is a malignancy of terminally differentiated plasma cells and is incurable in the majority of the patients. Thus, novel effective treatment regimens are urgently needed. In this study, we examined the effects of co-treatment with proteasome-inhibitor bortezomib and topoisomerase II inhibitor etoposide in multiple myeloma cells lines OPM-2, RPMI-S and NCI-H929.
View Article and Find Full Text PDFMultiple myeloma (MM) is a malignancy with excessive production of monoclonal proteins. At disease presentation 30% of MM patients have significant renal impairment which may progress to renal failure requiring dialysis. Besides chemotherapy extracorporeal elimination procedures such as plasma exchange have been applied as adjuvant strategies to eliminate free light chains from circulating blood, however the efficacy was poor with older techniques.
View Article and Find Full Text PDFProteasome inhibitors and histone deacetylase (HDAC) inhibitors are novel targeted therapies being evaluated in clinical trials for cutaneous T-cell lymphoma (CTCL). However, data in regard to tumor biology are limited with these agents. In the present study we analyzed the effects of the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) and the proteasome inhibitor bortezomib on human CTCL cells.
View Article and Find Full Text PDFLytic bone destruction is a hallmark of multiple myeloma (MM) and is because of an uncoupling of bone remodeling. Secretion of Dickkopf (DKK)-1 by myeloma cells is a major factor which causes inhibition of osteoblast precursors. In this study, the effect of different treatment regimens for MM on serum DKK-1 was evaluated and correlated with the response to treatment in 101 myeloma patients receiving bortezomib, thalidomide, lenalidomide, adriamycin and dexamethasone (AD) or high-dose chemotherapy (HDCT) followed by autologous stem cell transplantation (ASCT).
View Article and Find Full Text PDFPurpose: Curcumin is a natural polyphenolic derogate extracted from spice turmeric, exhibiting anti-inflammatory and chemopreventive activities. It was described to interact with the signalosome-associated kinases and the proteasome-ubiquitin system, which both are involved in the osteoclastogenesis. Thus, we hypothesized that curcumin could diminish osteoclast differentiation and function.
View Article and Find Full Text PDFSeveral prognostic markers, including parameters of tumor burden and cytogenetics, were adopted to identify high-risk patients in multiple myeloma (MM). Recently, the International Staging System (ISS), including beta2-microglobulin (beta2M) and albumin, was introduced for patients with symptomatic MM. As bone disease is a hallmark of MM, we investigated the prognostic impact of the bone resorption marker carboxy-terminal telopeptide of type-1 collagen (ICTP) in combination with ISS, beta2M, albumin, deletion of chromosome 13 and high-dose therapy (HDT) in 100 patients with newly diagnosed symptomatic MM.
View Article and Find Full Text PDFBackground: The ubiquitin-proteasome system has become a promising novel molecular target in cancer due to its critical role in cellular protein degradation, its interaction with cell cycle and apoptosis regulation and its unique mechanism of action.
Objective: This review focuses both on preclinical results and on data from clinical trials with proteasome inhibitors in cancer.
Methods: Results in hematological malignancies and solid tumors were included, and important data presented in abstract form were considered in this review.
Objectives: Lytic bone disease is a hallmark of multiple myeloma (MM) and is caused by osteoclast activation and osteoblast inhibition. Secretion of Dickkopf (DKK)-1 by myeloma cells is a major factor which causes inhibition of osteoblast precursors. So far, there is no study showing a significant difference in serum DKK-1 levels in MM patients with or without lytic bone lesions.
View Article and Find Full Text PDFWolbachia, a genus of endosymbiotic bacteria of filarial worms, represent novel targets for anti-filarial therapy. The efficacy of compounds against Wolbachia has been evaluated using antiserum raised against the 60 kDa heat shock protein (HSP60) which binds specifically to this protein in both Wolbachia and mitochondria. It has been shown that Wolbachia stains (using such specific probes) stronger than the mitochondria in untreated Onchocerca volvulus, whereas after the depletion of Wolbachia (with drugs) staining of the mitochondria is increased.
View Article and Find Full Text PDFObjectives: Mantle cell lymphoma (MCL) is an incurable B cell lymphoma, and novel treatment strategies are urgently needed. We evaluated the effects of combined treatment with the proteasome inhibitor bortezomib and the histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA) on MCL. Bortezomib acts by targeting the proteasome, and--among other mechanisms--results in a reduced nuclear factor-kappa B (NF-kappaB) activity.
View Article and Find Full Text PDFMelphalan is associated with severe side effects such as mucositis, diarrhea, and myelosuppression. We investigated how much the individual severity of these side effects is predicted by pharmacokinetics. In addition, we studied glutathione S-transferase GSTM1, GSTT1, and GSTP1 polymorphisms in relation to adverse events.
View Article and Find Full Text PDFRecent Results Cancer Res
July 2007
The proteasome is a multicatalytic threonine protease responsible for intracellular protein turnover in eukaryotic cells, including the processing and degradation of several proteins involved in cell cycle control and the regulation of apoptosis. Preclinical studies have shown that the treatment with proteasome inhibitors results in decreased proliferation, induction of apoptosis, and sensitization of tumor cells against conventional chemotherapeutic agents and irradiation. The effects were conferred to stabilization of p21, p27, Bax, p53, I-KB, and the resulting inhibition of the nuclear factor-KB (NF-KB) activation.
View Article and Find Full Text PDFFormation of osteolytic lesions is a key pathophysiological feature in multiple myeloma and results from the interaction of myeloma cells with the bone marrow microenvironment. Matrix metalloproteinases (MMPs) and plasmin may be involved in bone destruction, but their precise roles have not been clarified. Furthermore, the impact of osteoblast-related alterations on myeloma bone disease is not well understood.
View Article and Find Full Text PDFIn multiple myeloma, the overexpression of receptor activator of nuclear factor kappa B (NF-kappaB) ligand (RANKL) leads to the induction of NF-kappaB and activator protein-1 (AP-1)-related osteoclast activation and enhanced bone resorption. The purpose of this study was to examine the molecular and functional effects of proteasome inhibition in RANKL-induced osteoclastogenesis. Furthermore, we aimed to compare the outcome of proteasome versus selective NF-kappaB inhibition using bortezomib (PS-341) and I-kappaB kinase inhibitor PS-1145.
View Article and Find Full Text PDF