Publications by authors named "Heidecker G"

Despite the success of rotavirus vaccines, rotaviruses remain one of the leading causes of diarrheal diseases, resulting in significant childhood morbidity and mortality, especially in low- and middle-income countries. The reverse genetics system enables the manipulation of the rotavirus genome and opens the possibility of using rotavirus as an expression vector for heterologous proteins, such as vaccine antigens and therapeutic payloads. Here, we demonstrate that three positions in rotavirus genome-the C terminus of NSP1, NSP3 and NSP5-can tolerate the insertion of reporter genes.

View Article and Find Full Text PDF

Background: To investigate a vaccine technology with potential to protect against coronavirus disease 2019 (COVID-19) and reduce transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with a single vaccine dose, we developed a SARS-CoV-2 candidate vaccine using the live vesicular stomatitis virus (VSV) chimeric virus approach previously used to develop a licensed Ebola virus vaccine.

Methods: We generated a replication-competent chimeric VSV-SARS-CoV-2 vaccine candidate by replacing the VSV glycoprotein (G) gene with coding sequence for the SARS-CoV-2 Spike glycoprotein (S). Immunogenicity of the lead vaccine candidate (VSV∆G-SARS-CoV-2) was evaluated in cotton rats and golden Syrian hamsters, and protection from SARS-CoV-2 infection also was assessed in hamsters.

View Article and Find Full Text PDF

Epstein-Barr Virus (EBV) is the causative agent of infectious mononucleosis and has been associated with a variety of malignancies. In vivo, EBV infects B cells and epithelial cells. However, the current EBV neutralization assays, especially those against B cell infection, are low throughput, laborious and lack of sensitivity.

View Article and Find Full Text PDF

Glycoprotein E (gE) and glycoprotein I (gI) are expressed as a heterodimer on the surface of Herpes simplex virus (HSV). Glycoprotein E binds Fc domain of immunoglobulin G (IgG) and inhibits activities mediated by the IgG Fc domain, contributing to immune evasion by HSV. It has been reported that HSV type 1 gE (gE-1) is capable of binding IgG Fc as a monomer and in a heterodimeric complex with gI, with the heterodimer having 50- to100-fold greater affinity for Fc than gE alone.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) infection is the leading cause of hospitalization and infant mortality under six months of age worldwide; therefore, the prevention of RSV infection in all infants represents a significant unmet medical need. Here we report the isolation of a potent and broadly neutralizing RSV monoclonal antibody derived from a human memory B-cell. This antibody, RB1, is equipotent on RSV A and B subtypes, potently neutralizes a diverse panel of clinical isolates in vitro and demonstrates in vivo protection.

View Article and Find Full Text PDF
Article Synopsis
  • Human respiratory syncytial virus (RSV) is a significant threat, especially for infants and the elderly, and currently lacks a licensed vaccine.
  • This study tested two experimental vaccines based on parainfluenza virus 5 (PIV5) that express RSV proteins in animal models (cotton rats and African green monkeys) for their effectiveness in building immunity and providing protection against RSV.
  • The results showed that both vaccines produced strong immune responses and effectively protected against RSV, with PIV5/F demonstrating superior efficacy compared to PIV5/G, making it a promising candidate for further development.
View Article and Find Full Text PDF

Influenza hemagglutinin (HA) is the primary target of the humoral response during infection/vaccination. Current influenza vaccines typically fail to elicit/boost broadly neutralizing antibodies (bnAbs), thereby limiting their efficacy. Although several bnAbs bind to the conserved stem domain of HA, focusing the immune response to this conserved stem in the presence of the immunodominant, variable head domain of HA is challenging.

View Article and Find Full Text PDF

Human APOBEC3A (A3A) is a single-domain cytidine deaminase that converts deoxycytidine residues to deoxyuridine in single-stranded DNA (ssDNA). It inhibits a wide range of viruses and endogenous retroelements such as LINE-1, but it can also edit genomic DNA, which may play a role in carcinogenesis. Here, we extend our recent findings on the NMR structure of A3A and report structural, biochemical and cell-based mutagenesis studies to further characterize A3A's deaminase and nucleic acid binding activities.

View Article and Find Full Text PDF

Virus transmission can occur either by a cell-free mode through the extracellular space or by cell-to-cell transmission involving direct cell-to-cell contact. The factors that determine whether a virus spreads by either pathway are poorly understood. Here, we assessed the relative contribution of cell-free and cell-to-cell transmission to the spreading of the human immunodeficiency virus (HIV).

View Article and Find Full Text PDF

Tetherin is part of the cellular innate immunity and impedes cell-free transmission of viruses that bud from the plasma membrane by retaining them on the cell surface. Some viruses have evolved activities in different proteins such as Vpu (HIV-1), K-protein (KSHV), Nef (SIV) or Env (HIV-2) to downregulate tetherin and overcome its restriction. We found that chronically HTLV-1 infected T-cell lines express eightfold more tetherin than uninfected transformed T-cell lines suggesting that tetherin expression is not inhibited by the virus.

View Article and Find Full Text PDF

The hemagglutinin protein (HA) on the surface of influenza virus is essential for viral entry into the host cells. The HA1 subunit of HA is also the primary target for neutralizing antibodies. The HA2 subunit is less exposed on the virion surface and more conserved than HA1.

View Article and Find Full Text PDF

Although novel retroviral vectors for use in gene-therapy products are reducing the potential for formation of replication-competent retrovirus (RCR), it remains crucial to screen products for RCR for both research and clinical purposes. For clinical-grade gammaretrovirus-based vectors, RCR screening is achieved by an extended S(+)L(-) or marker-rescue assay, whereas standard methods for replication-competent lentivirus detection are still in development. In this report, we describe a rapid and sensitive method for replication-competent gammaretrovirus detection.

View Article and Find Full Text PDF

We used replication-dependent retroviral vectors to identify cell surface antigens involved in the cell-to-cell transmission of human T cell leukemia virus type 1 (HTLV-1). We generated monoclonal antibodies (MAbs) against Jurkat T cells and selected several IgM MAbs that strongly inhibited HTLV-1 but not human immune deficiency virus type 1 (HIV-1) cell-to-cell infection. These MAbs recognized the so-called Tn antigen (GalNAcα1-O-Ser/Thr) that arises on Jurkat cells from a mutation in the T-synthase-specific chaperone Cosmc and the consequent loss of O-glycan elongation.

View Article and Find Full Text PDF

Human T-cell leukemia virus type 1 (HTLV-1) has two late domain (LD) motifs, PPPY and PTAP, which are important for viral budding. Mutations in the PPPY motif are more deleterious for viral release than changes in the PTAP motif. Several reports have shown that the interaction of PPPY with the WW domains of a Nedd4 (neuronal precursor cell-expressed developmentally down-regulated-4) family ubiquitin ligase (UL) is a critical event in virus release.

View Article and Find Full Text PDF

Human APOBEC3B (A3B) has been described as a potent inhibitor of retroviral infection and retrotransposition. However, we found that the predominantly nuclear A3B only weakly restricted infection by HIV-1, HIV-1Δvif, and human T-cell leukemia virus type 1 (HTLV-1), while significantly inhibiting LINE-1 retrotransposition. The chimeric construct A3G/B, in which the first 60 amino acids of A3B were replaced with those of A3G, restricted HIV-1, HIV-1Δvif, and HTLV-1 infection, as well as LINE-1 retrotransposition.

View Article and Find Full Text PDF

The first human retrovirus, human T-lymphotropic virus 1 (HTLV-1), was discovered 30 years ago. Despite intensive study, the cell surface molecules involved in virus entry have only been identified over the past few years. Three molecules form the receptor complex for HTLV-1: glucose transporter 1, neuropilin 1 and heparan sulfate proteoglycans.

View Article and Find Full Text PDF

Human T-cell leukemia virus type 1 (HTLV-1) infection and transformation are associated with an incremental switch in the expression of the Src-related protein tyrosine kinases Lck and Lyn. We examined the physical and functional interactions of Lyn with receptors and signal transduction proteins in HTLV-1-infected T cells. Lyn coimmunoprecipitates with the interleukin-2 beta receptor (IL-2Rβ) and JAK3 proteins; however, the association of Lyn with the IL-2Rβ and Lyn kinase activity was independent of IL-2 stimulation.

View Article and Find Full Text PDF

Influenza HA is the primary target of neutralizing antibodies during infection, and its sequence undergoes genetic drift and shift in response to immune pressure. The receptor binding HA1 subunit of HA shows much higher sequence variability relative to the metastable, fusion-active HA2 subunit, presumably because neutralizing antibodies are primarily targeted against the former in natural infection. We have designed an HA2-based immunogen using a protein minimization approach that incorporates designed mutations to destabilize the low pH conformation of HA2.

View Article and Find Full Text PDF

Human T-lymphotropic virus type 1 (HTLV-1) envelope (Env) glycoprotein mediates binding of the virus to its receptor on the surface of target cells and subsequent fusion of virus and cell membranes. To better understand the mechanisms that control HTLV-1 Env trafficking and activity, we have examined two protein-protein interaction motifs in the cytoplasmic domain of Env. One is the sequence YSLI, which matches the consensus YXXPhi motifs that are known to interact with various adaptor protein complexes; the other is the sequence ESSL at the C terminus of Env, which matches the consensus PDZ-binding motif.

View Article and Find Full Text PDF

We have developed an efficient method to quantify cell-to-cell infection with single-cycle, replication dependent reporter vectors. This system was used to examine the mechanisms of infection with HTLV-1 and HIV-1 vectors in lymphocyte cell lines. Effector cells transfected with reporter vector, packaging vector, and Env expression plasmid produced virus-like particles that transduced reporter gene activity into cocultured target cells with zero background.

View Article and Find Full Text PDF
Article Synopsis
  • - The study tested the effectiveness of multiple adenovirus serotype 5 (Ad5) vaccines in rhesus macaques against simian immunodeficiency virus (SIV), finding that combinations of vaccines targeting different viral proteins led to better immune responses
  • - Immunization did not show any negative interactions between the different antigens, indicating that using a broader range of antigens generally produced more favorable virus control outcomes
  • - While the study identified a ranking of vaccine efficacy, the small size of the cohorts means these results may need further investigation to confirm their validity, especially considering recent negative results from a related HIV-1 vaccine trial
View Article and Find Full Text PDF

Rational vaccines designed to engender T cell responses require intimate knowledge of how epitopes are generated and presented. Recently, we vaccinated 8 Mamu-A*02(+) rhesus macaques with every SIV protein except Envelope (Env). Surprisingly, one of the strongest T cell responses engendered was against the Env protein, the Mamu-A*02-restricted epitope, Env(788-795)RY8.

View Article and Find Full Text PDF

We have investigated the underlying mechanism by which direct cell-cell contact enhances the efficiency of cell-to-cell transmission of retroviruses. Applying 4D imaging to a model retrovirus, the murine leukemia virus, we directly monitor and quantify sequential assembly, release, and transmission events for individual viral particles as they happen in living cells. We demonstrate that de novo assembly is highly polarized towards zones of cell-cell contact.

View Article and Find Full Text PDF

All human immunodeficiency virus (HIV) vaccine efficacy trials to date have ended in failure. Structural features of the Env glycoprotein and its enormous variability have frustrated efforts to induce broadly reactive neutralizing antibodies. To explore the extent to which vaccine-induced cellular immune responses, in the absence of neutralizing antibodies, can control replication of a heterologous, mucosal viral challenge, we vaccinated eight macaques with a DNA/Ad5 regimen expressing all of the proteins of SIVmac239 except Env.

View Article and Find Full Text PDF

Abeta-derived diffusible ligands (ADDLs) are abundant in AD brain, bind to hippocampal neurons and induce deficits in rodent cognition. To further investigate ADDL binding to neurons and identify antibodies that block this association, a panel of anti-Abeta and anti-ADDL antibodies was characterized for their ability to immuno-detect neuronally bound ADDLs and attenuate the binding of ADDLs to neurons. The results showed that anti-Abeta and anti-ADDL antibodies were able to abate ADDLs binding to hippocampal neurons, but to different degrees.

View Article and Find Full Text PDF