Objective: The image quality of synthetized FLAIR (fluid attenuated inversion recovery) images is generally inferior to its conventional counterpart, especially regarding the lesion contrast mismatch. This work aimed to improve the lesion appearance through a hybrid methodology.
Materials And Methods: We combined a full brain 5-min MR-STAT acquisition followed by FLAIR synthetization step with an ultra-under sampled conventional FLAIR sequence and performed the retrospective and prospective analysis of the proposed method on the patient datasets and a healthy volunteer.
Purpose: MR-STAT is a relatively new multiparametric quantitative MRI technique in which quantitative paramater maps are obtained by solving a large-scale nonlinear optimization problem. Managing reconstruction times is one of the main challenges of MR-STAT. In this work we leverage GPU hardware to reduce MR-STAT reconstruction times.
View Article and Find Full Text PDFPurpose: To demonstrate the feasibility and robustness of the Magnetic Resonance Spin TomogrAphy in Time-domain (MR-STAT) framework for fast, high SNR relaxometry at 7T.
Methods: To deploy MR-STAT on 7T-systems, we designed optimized flip-angles using the BLAKJac-framework that incorporates the SAR-constraints. Transmit RF-inhomogeneities were mitigated by including a measured -map in the reconstruction.
Magnetic Resonance Spin TomogrAphy in Time-domain (MR-STAT) is a multiparametric quantitative MR framework, which allows for simultaneously acquiring quantitative tissue parameters such as T1, T2, and proton density from one single short scan. A typical two-dimensional (2D) MR-STAT acquisition uses a gradient-spoiled, gradient-echo sequence with a slowly varying RF flip-angle train and Cartesian readouts, and the quantitative tissue maps are reconstructed by an iterative, model-based optimization algorithm. In this work, we design a three-dimensional (3D) MR-STAT framework based on previous 2D work, in order to achieve better image signal-to-noise ratio, higher though-plane resolution, and better tissue characterization.
View Article and Find Full Text PDFIn quantitative measurement of the value of tissues, the diffusion of water molecules has been recognized as a confounder. This is most notably so for transient-state quantitative mapping techniques, which allow simultaneous estimation of and . In prior work, apparently conflicting conclusions are presented on the level of diffusion-induced bias on the T estimate.
View Article and Find Full Text PDFMR Spin TomogrAphy in Time-domain ("MR-STAT") is quantitative MR technique in which multiple quantitative parameters are estimated from a single short scan by solving a large-scale non-linear optimization problem. In this work we extended the MR-STAT framework to non-Cartesian gradient trajectories. Cartesian MR-STAT and radial MR-STAT were compared in terms of time-efficiency and robustness in simulations, gel phantom measurements and in vivo measurements.
View Article and Find Full Text PDFIn transient-state multiparametric MRI sequences such as Magnetic Resonance Spin TomogrAphy in Time-domain (MR-STAT), MR fingerprinting, or hybrid-state imaging, the flip angle pattern of the RF excitation varies over the sequence. This gives considerable freedom to choose an optimal pattern of flip angles. For pragmatic reasons, most optimization methodologies choose for a single-voxel approach (i.
View Article and Find Full Text PDFBackground: Magnetic Resonance Spin TomogrAphy in Time-domain (MR-STAT) can reconstruct whole-brain multi-parametric quantitative maps (eg, T , T ) from a 5-minute MR acquisition. These quantitative maps can be leveraged for synthetization of clinical image contrasts.
Purpose: The objective was to assess image quality and overall diagnostic accuracy of synthetic MR-STAT contrasts compared to conventional contrast-weighted images.
MR-STAT is an emerging quantitative magnetic resonance imaging technique which aims at obtaining multi-parametric tissue parameter maps from single short scans. It describes the relationship between the spatial-domain tissue parameters and the time-domain measured signal by using a comprehensive, volumetric forward model. The MR-STAT reconstruction solves a large-scale nonlinear problem, thus is very computationally challenging.
View Article and Find Full Text PDFBackground And Purpose: The heart is important in radiotherapy either as target or organ at risk. Quantitative T and T cardiac magnetic resonance imaging (qMRI) may aid in target definition for cardiac radioablation, and imaging biomarker for cardiotoxicity assessment. Hybrid MR-linac devices could facilitate daily cardiac qMRI of the heart in radiotherapy.
View Article and Find Full Text PDFFast and accurate modeling of MR signal responses are typically required for various quantitative MRI applications, such as MR fingerprinting. This work uses a new extended phase graph (EPG)-Bloch model for accurate simulation of transient-state, gradient-spoiled MR sequences, and proposes a recurrent neural network (RNN) as a fast surrogate of the EPG-Bloch model for computing large-scale MR signals and derivatives. The computational efficiency of the RNN model is demonstrated by comparisons with other existing models, showing one to three orders of acceleration compared with the latest GPU-accelerated, open-source EPG package.
View Article and Find Full Text PDFHybrid MRI-linac (MRL) systems enable daily multiparametric quantitative MRI to assess tumor response to radiotherapy. Magnetic resonance fingerprinting (MRF) may provide time efficient means of rapid multiparametric quantitative MRI. The accuracy of MRF, however, relies on adequate control over system imperfections, such as eddy currents and [Formula: see text], which are different and not as well established on MRL systems compared to diagnostic systems.
View Article and Find Full Text PDFIEEE Trans Med Imaging
November 2020
MR-STAT is a quantitative magnetic resonance imaging framework for obtaining multi-parametric quantitative tissue parameter maps using data from single short scans. A large-scale optimization problem is solved in which spatial localization of signal and estimation of tissue parameters are performed simultaneously by directly fitting a Bloch-based volumetric signal model to measured time-domain data. In previous work, a highly parallelized, matrix-free Gauss-Newton reconstruction algorithm was presented that can solve the large-scale optimization problem for high-resolution scans.
View Article and Find Full Text PDFMR-STAT is a recently proposed framework that allows the reconstruction of multiple quantitative parameter maps from a single short scan by performing spatial localisation and parameter estimation on the time-domain data simultaneously, without relying on the fast Fourier transform (FFT). To do this at high resolution, specialized algorithms are required to solve the underlying large-scale nonlinear optimisation problem. We propose a matrix-free and parallelized inexact Gauss-Newton based reconstruction algorithm for this purpose.
View Article and Find Full Text PDFIntroduction: Blackcurrant (Ribes nigrum L.) is an excellent example of a "super fruit" with potential health benefits. Both genotype and cultivation environment are known to affect the chemical composition of blackcurrant, especially ascorbic acid and various phenolic compounds.
View Article and Find Full Text PDFQuantitative Magnetic Resonance Imaging (MRI) is based on a two-steps approach: estimation of the magnetic moments distribution inside the body, followed by a voxel-by-voxel quantification of the human tissue properties. This splitting simplifies the computations but poses several constraints on the measurement process, limiting its efficiency. Here, we perform quantitative MRI as a one step process; signal localization and parameter quantification are simultaneously obtained by the solution of a large scale nonlinear inversion problem based on first-principles.
View Article and Find Full Text PDFVernalisation requirement is an agriculturally important trait that postpones the development of cold-sensitive floral organs until the spring. The family Rosaceae includes many agriculturally important fruit and berry crops that suffer from crop losses caused by frost injury to overwintering flower buds. Recently, a vernalisation-requiring accession of the Rosaceae model woodland strawberry (Fragaria vesca) has been identified in northern Norway.
View Article and Find Full Text PDFBackground: Marked effects of the climatic environment on fruit chemical composition have often been demonstrated in field experiments. However, complex covariations of several climatic factors in the natural environment complicate the interpretation of such experiments and the identification of the causal factors. This can be better achieved in a phytotron where the various climatic factors can be varied systematically.
View Article and Find Full Text PDFThe effects of daylength and temperature on flowering of the cultivated octoploid strawberry (Fragaria × ananassa Duch.) have been studied extensively at the physiological level, but information on the molecular pathways controlling flowering in the species is scarce. The flowering pathway has been studied at the molecular level in the diploid short-day woodland strawberry (F.
View Article and Find Full Text PDFThe effects of postflowering temperature and daylength on the concentration of individual phenolic compounds were studied in black currant (Ribes nigrum L.) berries under controlled phytotron conditions. The four cultivars studied varied greatly in their concentrations of individual phenolic compounds and temperature stability for accumulation.
View Article and Find Full Text PDFEnvironmental regulation of growth and dormancy of four Sorbus genotypes was studied in controlled environments. Emphasis was placed on assessment of the presence and nature of the deficient photoperiodic dormancy regulation system that has previously been reported for some woody Rosaceae species. Two genotypes of Sorbus aucuparia L.
View Article and Find Full Text PDFThe effects of postflowering temperature on the fruit chemical composition of Glen Ample raspberries were studied under controlled environment conditions. The berry weight decreased significantly with increasing temperature (12, 18, and 24 °C) and with progress of the harvest period. Because the moisture content increased in parallel with the berry weight, the antioxidant capacity (AOC) and the concentration of a range of bioactive compounds decreased with decreasing temperature and progress of the harvest season when expressed on a fresh weight basis in the conventional way.
View Article and Find Full Text PDFTo survive, plants optimise their seasonal flowering time and set seed to avoid extremes of the environment including frost, heat and drought. Additionally, pollination may need to be tightly regulated in time so that it coincides with flowering of other individuals and/or with the presence of bird or insect pollinators. It is now clear that plants use seasonal changes in natural light intensity, daylight duration and temperature to achieve reproducible timing of flowering year-in-year-out.
View Article and Find Full Text PDF