Publications by authors named "Heide Knauer"

Ageing results from complex genetically and epigenetically programmed processes that are elicited in part by noxious or stressful events that cause programmed cell death. Here, we report that administration of spermidine, a natural polyamine whose intracellular concentration declines during human ageing, markedly extended the lifespan of yeast, flies and worms, and human immune cells. In addition, spermidine administration potently inhibited oxidative stress in ageing mice.

View Article and Find Full Text PDF

The mitochondrial dimeric phospholipid cardiolipin is characterized by a high degree of unsaturation of its acyl chains, which is important for its functional interaction with mitochondrial enzymes. The unusual fatty acid composition of cardiolipin molecular species emerges from a de novo synthesized "premature" species by extensive acyl chain remodeling that involves as yet only partially identified acyltransferases and phospholipases. Recently, the yeast protein Taz1p was shown to function as a transacylase, which catalyzes the reacylation of monolysocardiolipin to mature cardiolipin.

View Article and Find Full Text PDF

The yeast vacuole plays a crucial role in cell homeostasis including pH regulation and degradation of proteins and organelles. Class C VPS genes code for proteins essential for vacuolar and endosomal vesicle fusion, their deletion results in the absence of a detectable vacuole. We found that single gene deletions of class C VPS genes result in a drastically enhanced sensitivity to treatment with acetic acid whereas sensitivity towards H2O2 remains largely unaffected.

View Article and Find Full Text PDF

Here we report for the first time that L-amino acid oxidase (LAAO), a major component of snake venom, induces apoptosis in yeast. The causative agent for induction of apoptosis has been shown to be hydrogen peroxide, produced by the enzymatic activity of LAAO. However, the addition of catalase, a specific hydrogen peroxide scavenger, does not prevent cell demise completely.

View Article and Find Full Text PDF

Endonuclease G (EndoG) is located in mitochondria yet translocates into the nucleus of apoptotic cells during human degenerative diseases. Nonetheless, a direct involvement of EndoG in cell-death execution remains equivocal, and the mechanism for mitochondrio-nuclear translocation is not known. Here, we show that the yeast homolog of EndoG (Nuc1p) can efficiently trigger apoptotic cell death when excluded from mitochondria.

View Article and Find Full Text PDF