Publications by authors named "Hei-man Chow"

Article Synopsis
  • Maintaining healthy mitochondria is essential for cell survival and is linked to various diseases like Alzheimer's, highlighting the importance of mitochondrial function in overall health.* -
  • The non-coding RNA lncMtDloop, which is found in the mitochondrial genome, plays a role in preserving mitochondrial RNA levels and activity as organisms age, with its expression reduced in Alzheimer's patients and mouse models.* -
  • By enhancing lncMtDloop transport into mitochondria, researchers improved mitochondrial function and reduced Alzheimer's-related symptoms in mouse models, suggesting lncMtDloop could be a potential target for Alzheimer's treatment.*
View Article and Find Full Text PDF

Mitochondria constantly fuse and divide for mitochondrial inheritance and functions. Here, we identified a distinct type of naturally occurring fission, tail-autotomy fission, wherein a tail-like thin tubule protrudes from the mitochondrial body and disconnects, resembling autotomy. Next, utilizing an optogenetic mitochondria-specific mechanostimulator, we revealed that mechanical tensile force drives tail-autotomy fission.

View Article and Find Full Text PDF

Ethanol metabolism is relatively understudied in neurons, even though changes in neuronal metabolism are known to affect their activity. Recent work demonstrates that ethanol is preferentially metabolized over glucose as a source of carbon and energy, and it reprograms neurons to a state of reduced energy potential and diminished capacity to utilize glucose once ethanol is exhausted. Ethanol intake has been associated with changes in neuronal firing and specific brain activity (EEG) patterns have been linked with risk for alcohol use disorder (AUD).

View Article and Find Full Text PDF

Omicron generally causes milder disease than previous strains of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), especially in fully vaccinated individuals. However, incompletely vaccinated children may develop Omicron-related complications such as those affecting the central nervous system. To characterize the spectrum of clinical manifestations of neuro-COVID and to identify potential biomarkers associated with clinical outcomes, we recruited 15 children hospitalized for Omicron-related neurological manifestations in three hospitals in Hong Kong (9 boys and 6 girls aged 1-13 years).

View Article and Find Full Text PDF

Chronic binge-like drinking is a risk factor for age-related dementia, however, the lasting and irreversible effect of alcohol on the brain remains elusive. Transcriptomic changes in brain cortices revealed pro-ageing hallmarks upon chronic ethanol exposure and these changes predominantly occur in neurons. The changes are attributed to a prioritized ethyl alcohol oxidation in these cells via the NADPH-dependent cytochrome pathway.

View Article and Find Full Text PDF

Neurite outgrowth is a fundamental process in neurons that produces extensions and, consequently, neural connectivity. Neurite damage and atrophy are observed in various brain injuries and disorders. Understanding the intrinsic pathways of neurite outgrowth is essential for developing strategies to stimulate neurite regeneration.

View Article and Find Full Text PDF

Microglial cells consume adenosine triphosphate (ATP) during phagocytosis to clear neurotoxic β-amyloid in Alzheimer's disease (AD). However, the contribution of energy metabolism to microglial function in AD remains unclear. Here, we demonstrate that hexokinase 2 (HK2) is elevated in microglia from an AD mouse model (5xFAD) and AD patients.

View Article and Find Full Text PDF

Polyglutamine (polyQ) diseases, including spinocerebellar ataxias and Huntington's disease, are progressive neurodegenerative disorders caused by CAG triplet-repeat expansion in the coding regions of disease-associated genes. In this study, we found that neurotoxic small CAG (sCAG) RNA species, microscopic Ataxin-2 CAG RNA foci, and protein aggregates exist as independent entities in cells. Synaptic defects and neurite outgrowth abnormalities were observed in mutant Ataxin-2-expressing mouse primary cortical neurons.

View Article and Find Full Text PDF

The tumor suppressor p16 protein is an endogenous CDK4/6 inhibitor. Inactivation of its encoding gene is found in nearly half of human cancers. Restoration of p16 function via adenovirus-based gene delivery has been shown to be effective in suppressing aberrant cell growth in many types of cancer, however, the potential risk of insertional mutagenesis in genomic DNA remains a major concern.

View Article and Find Full Text PDF

Early changes in astrocyte energy metabolism are associated with late-onset Alzheimer's disease (LOAD), but the underlying mechanism remains elusive. A previous study suggested an association between a synonymous SNP (rs1012672, C→T) in LRP6 gene and LOAD; and that is indeed correlated with diminished LRP6 gene expression in the frontal cortex region. The authors show that LRP6 is a unique Wnt coreceptor on astrocytes, serving as a bimodal switch that modulates their metabolic landscapes.

View Article and Find Full Text PDF

DNA damage plays a central role in the cellular pathogenesis of polyglutamine (polyQ) diseases, including Huntington's disease (HD). In this study, we showed that the expression of untranslatable expanded CAG RNA per se induced the cellular DNA damage response pathway. By means of RNA sequencing (RNA-seq), we found that expression of the () gene was down-regulated in mutant CAG RNA-expressing cells.

View Article and Find Full Text PDF

5-hydroxymethylcytosine (5hmC) is an intermediate stage of DNA de-methylation. Its location in the genome also serves as an important regulatory signal for many biological processes and its levels change significantly with the etiology of Alzheimer's disease (AD). In keeping with this relationship, the TET family of enzymes which convert 5-methylcytosine (5mC) to 5hmC are responsive to the presence of Aβ.

View Article and Find Full Text PDF
Article Synopsis
  • ATM protein is associated with various organelles and is critical for neuronal function, with mutations leading to ataxia-telangiectasia (A-T), a disorder affecting multiple organs.
  • Research indicates that ATM deficiency may disrupt autophagy and lysosomal processes, causing synaptic maintenance and glucose uptake issues in neurons.
  • The study highlights a novel interaction between ATM and the dynein protein, affecting lysosomal transport and GLUT4 translocation, providing insights into potential therapeutic targets for A-T.
View Article and Find Full Text PDF

Background: Synaptic protein dyshomeostasis and functional loss is an early invariant feature of Alzheimer's disease (AD), yet the unifying etiological pathway remains largely unknown. Knowing that cyclin-dependent kinase 5 (CDK5) plays critical roles in synaptic formation and degeneration, its phosphorylation targets were reexamined in search of candidates with direct global impacts on synaptic protein dynamics, and the associated regulatory network was also analyzed.

Methods: Quantitative phosphoproteomics and bioinformatics analyses were performed to identify top-ranked candidates.

View Article and Find Full Text PDF

Prediabetes and Alzheimer's disease both increase in prevalence with age. The former is a risk factor for the latter, but a mechanistic linkage between them remains elusive. We show that prediabetic serum hyperinsulinemia is reflected in the cerebrospinal fluid and that this chronically elevated insulin renders neurons resistant to insulin.

View Article and Find Full Text PDF

Ataxia-telangiectasia (A-T) is an autosomal recessive disease caused by mutation of the gene and is characterized by loss of cerebellar Purkinje cells, neurons with high physiological activity and dynamic ATP demands. Here, we show that depletion of ATP generates reactive oxygen species that activate ATM. We find that when ATM is activated by oxidative stress, but not by DNA damage, ATM phosphorylates NRF1.

View Article and Find Full Text PDF

ATM (ataxia-telangiectasia mutated) and ATR (ATM and Rad3-related) are large PI3 kinases whose human mutations result in complex syndromes that include a compromised DNA damage response (DDR) and prominent nervous system phenotypes. Both proteins are nuclear-localized in keeping with their DDR functions, yet both are also found in cytoplasm, including on neuronal synaptic vesicles. In ATM- or ATR-deficient neurons, spontaneous vesicle release is reduced, but a drop in ATM or ATR level also slows FM4-64 dye uptake.

View Article and Find Full Text PDF

DNA damage is correlated with and may drive the ageing process. Neurons in the brain are postmitotic and are excluded from many forms of DNA repair; therefore, neurons are vulnerable to various neurodegenerative diseases. The challenges facing the field are to understand how and when neuronal DNA damage accumulates, how this loss of genomic integrity might serve as a 'time keeper' of nerve cell ageing and why this process manifests itself as different diseases in different individuals.

View Article and Find Full Text PDF

Glycogen synthase kinase 3β (GSK3β) and cyclin-dependent kinase 5 (CDK5) are tau kinases and have been proposed to contribute to the pathogenesis of Alzheimer's disease. The 3D structures of these kinases are remarkably similar, which led us to hypothesize that both might be capable of binding cyclin proteins--the activating cofactors of all CDKs. CDK5 is normally activated by the cyclin-like proteins p35 and p39.

View Article and Find Full Text PDF