Publications by authors named "Hei-Yui Kai"

The conventional energy transfer pathway in organic lanthanide complexes is purported to be from the excited singlet state of the chromophore to the triplet state and subsequently directly to the emitting state of the trivalent lanthanide ion. In this work, we found that the energy transfer occurs from the triplet state to the nearest energy level, instead of directly to the emitting state of the lanthanide ion. The triplet decay rate for different lanthanide ions follows an energy gap law from the triplet level to the receiving level of the lanthanide ion.

View Article and Find Full Text PDF

Cyclen-peptide bioconjugates are usually prepared in multiple steps that require individual preparation and purification of the cyclic peptide and hydrophilic cyclen derivatives. An efficient strategy is discovered for peptide cyclization and functionalization toward lanthanide probe via three components intermolecular crosslinking on solid-phase peptide synthesis with high conversion yield. Multifunctionality can be conferred by introducing different modular parts or/and metal ions on the cyclen-embedded cyclopeptide.

View Article and Find Full Text PDF

Undoped YTiO exhibits impurity emission bands at low temperatures due to Mn and Cr, as established by codoping with these ions. Contrary to a recent report by Wang et al., , , 36834-36844, we do not observe Bi emission in this codoped host, as also is the case for Fe.

View Article and Find Full Text PDF

Corroles have attracted increasing research interests in recent decades owing to their unique properties over porphyrins. However, the relatively inefficient and tedious synthetic procedures of corrole building blocks with functional groups for bioconjugation hindered their bioapplications. Herein, we report a highly efficient protocol to synthesize corrole-peptide conjugates with good yields (up to 63 %) without using prepared corrole building blocks.

View Article and Find Full Text PDF

Multifunctional porphyrin-peptide conjugates with different propensities for self-assembly into various supramolecular nanoarchitectures play important roles in advanced materials and biomedical research. However, preparing prefunctionalized core porphyrins by traditional low-yielding statistical synthesis and purifying them after peptide ligation through many rounds of HPLC purification is tedious and unsustainable. Herein, we report a novel integrated solid-phase synthetic protocol for the construction of porphyrin moieties from simple aldehydes and dipyrromethanes on resin-bound peptides directly to form mono-, cis/trans-di-, and trivalent porphyrin-peptide conjugates in a highly efficient and controllable manner; moreover, only single final-stage HPLC purification of the products is needed.

View Article and Find Full Text PDF

The effect of temperature upon the lanthanide luminescence lifetime and intensity has been investigated in toluene solution for the complexes (Ln = Eu, Sm, Nd, Yb; Phen = 1,10-phenanthroline; TTA = thenoyltrifluoroacetonate). Thermally excited back-transfer to a charge transfer state was found to occur for Ln = Eu and can be explained by lifetime and intensity back-transfer models. The emission intensity and lifetime were also quenched with increasing temperature for Ln = Sm, and the activation energy for nonradiative decay is similar to that for the thermal population of Sm excited states.

View Article and Find Full Text PDF