The ability to manufacture 3D metallic architectures with microscale resolution is greatly pursued because of their diverse applications in microelectromechanical systems (MEMS) including microelectronics, mechanical metamaterials, and biomedical devices. However, the well-developed photolithography and emerging metal additive manufacturing technologies have limited abilities in manufacturing micro-scaled metallic structures with freeform 3D geometries. Here, for the first time, the high-fidelity fabrication of arbitrary metallic motifs with sub-10 µm resolution is achieved by employing an embedded-writing embedded-sintering (EWES) process.
View Article and Find Full Text PDFDeveloping microscale sensors capable of force measurements down to the scale of piconewtons is of fundamental importance for a wide range of applications. To date, advanced instrumentations such as atomic force microscopes and other specifically developed micro/nano-electromechanical systems face challenges such as high cost, complex detection systems and poor electromagnetic compatibility. Here, it presents the unprecedented design and 3D printing of general fiber-integrated force sensors using spring-composed Fabry-Perot cavities.
View Article and Find Full Text PDFThree-dimensional-structured metal oxides have myriad applications for optoelectronic devices. Comparing to conventional lithography-based manufacturing methods which face significant challenges for 3D device architectures, additive manufacturing approaches such as direct ink writing offer convenient, on-demand manufacturing of 3D oxides with high resolutions down to sub-micrometer scales. However, the lack of a universal ink design strategy greatly limits the choices of printable oxides.
View Article and Find Full Text PDFResearch (Wash D C)
June 2023
Ionogels have garnered great attention as promising soft conducting materials for the fabrication of flexible energy storage devices, soft actuators, and ionotronics. However, the leakage of the ionic liquids, weak mechanical strength, and poor manufacturability have greatly limited their reliability and applications. Here, we propose a new ionogel synthesis strategy by utilizing granular zwitterionic microparticles to stabilize ionic liquids.
View Article and Find Full Text PDFMicrometer-resolution 3D printing of functional oxides is of growing importance for the fabrication of micro-electromechanical systems (MEMSs) with customized 3D geometries. Compared to conventional microfabrication methods, additive manufacturing presents new opportunities for the low-cost, energy-saving, high-precision, and rapid manufacturing of electronics with complex 3D architectures. Despite these promises, methods for printable oxide inks are often hampered by challenges in achieving the printing resolution required by today's MEMS electronics and integration capabilities with various other electronic components.
View Article and Find Full Text PDF