Publications by authors named "Heggodu G Rohit Kumar"

Background: We previously synthesized two DNA intercalative Pyrimido[4',5':4,5]thieno(2,3-b) quinolines (PTQ), 9-hydroxy-4-(3-diethylaminopropylamino)pyrimido[4',5':4,5]thieno(2,3-b) quinolines (Hydroxy- DPTQ) and 8-methoxy-4-(3-diethylaminopropylamino) pyrimido[4',5':4,5]thieno(2,3-b) quinolines (Methoxy-DPTQ), and reported their cytotoxicity against cancer cell lines.

Methods: In the present study, we sought to analyze the antitumor activity of Hydroxy-DPTQ and Methoxy-DPTQ on Ehrlich's ascites carcinoma in vivo models, along with other pharmacological activities and toxicity.

Results: In this study, both the test molecules studied possess potent in vivo antitumor activity without any hematological, biochemical or nephrotoxicity.

View Article and Find Full Text PDF

Two new derivatives of pyrimido[4',5';4,5]thieno(2,3-b)quinoline (PTQ), 9-hydroxy-4-(3-diethylaminopropylamino)pyrimido[4',5';4,5]thieno(2,3-b)quinoline (Hydroxy-DPTQ) and 8-methoxy-4-(3-diethylaminopropylamino)pyrimido[4',5';4,5]thieno(2,3-b)quinoline (Methoxy-DPTQ) were synthesized and their DNA binding ability was analyzed using spectroscopy (UV-visible, fluorescence and circular dichroism), ethidium bromide dye displacement assay, melting temperature (T) analysis and computational docking studies. The hypochromism in UV-visible spectrum and increased fluorescence emission of Hydroxy-DPTQ and Methoxy-DPTQ in the presence of DNA suggested the molecule-DNA interaction. The association constants calculated from UV-visible and spectral titrations were of the order 10 to 10M.

View Article and Find Full Text PDF

Targeting protein kinases (PKs) has been a promising strategy in treating cancer, as PKs are key regulators of cell survival and proliferation. Here in this study, we studied the ability of pyrimido[4',5':4,5]thieno(2,3-)quinolines (PTQ) to inhibit different PKs by performing computational docking and screening. Docking studies revealed that 4-butylaminopyrimido[4',5':4,5]thieno(2,3-)quinoline (BPTQ) has a higher order of interaction with the kinase receptors than other PTQ derivatives.

View Article and Find Full Text PDF

Circular dichroism, topological studies, molecular docking, absorbance, and fluorescence spectral titrations were employed to study the interaction of 4-morpholinopyrimido [4',5':4,5] selenolo (2,3-b) quinoline (MPSQ) with DNA. The association constants of MPSQ-DNA interactions were of the order of 10(4) M(-1). Melting temperature, topological, and docking studies confirmed that the mode of interaction was by intercalation with preference to d(GpC)-d(CpG) site of DNA.

View Article and Find Full Text PDF

Purpose: DNA intercalators are one of the interesting groups in cancer chemotherapy. The development of novel anticancer small molecule has gained remarkable interest over the last decade. In this study, we synthesized and investigated the ability of a tetracyclic-condensed quinoline compound, 4-butylaminopyrimido[4',5':4,5]thieno(2,3-b)quinoline (BPTQ), to interact with double-stranded DNA and inhibit cancer cell proliferation.

View Article and Find Full Text PDF