Publications by authors named "Hege Thoresen"

Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) plays a crucial role in regulation of metabolic homeostasis. To understand the role of the catalytic α2 subunit of AMPK in skeletal muscle energy metabolism, myotube cultures were established from and mice. Myotubes from mice had lower basal oleic acid and glucose oxidation compared to myotubes from mice.

View Article and Find Full Text PDF

Skeletal muscle has an important role in whole body energy metabolism and various proteases are involved in skeletal muscle functions. We have previously identified the cysteine protease legumain in cultured human skeletal muscle cells. However, the potential role of legumain in regulation of energy metabolism remains unexplored.

View Article and Find Full Text PDF

Introduction: Krill oil is a dietary supplement derived from Antarctic krill; a small crustacean found in the ocean. Krill oil is a rich source of omega-3 fatty acids, specifically eicosapentaenoic acid and docosahexaenoic acid, as well as the antioxidant astaxanthin. The aim of this study was to investigate the effects of krill oil supplementation, compared to placebo oil (high oleic sunflower oil added astaxanthin), on energy metabolism and substrate turnover in human skeletal muscle cells.

View Article and Find Full Text PDF

Background: Skeletal muscle adapts in reaction to contractile activity to efficiently utilize energy substrates, primarily glucose and free fatty acids (FA). Inactivity leads to atrophy and a change in energy utilization in individuals with spinal cord injury (SCI). The present study aimed to characterize possible inactivity-related differences in the energy metabolism between skeletal muscle cells cultured from satellite cells isolated 1- and 12-months post-SCI.

View Article and Find Full Text PDF

In addition to its antiatherogenic role, HDL reportedly modulates energy metabolism at the whole-body level. HDL functionality is associated with its structure and composition, and functional activities can differ between HDL subclasses. Therefore, we studied if HDL and HDL, the two major HDL subclasses, are able to modulate energy metabolism of skeletal muscle cells.

View Article and Find Full Text PDF

The interplay between skeletal muscle and bone is primarily mechanical; however, biochemical crosstalk by secreted mediators has recently gained increased attention. The aim of this study was to investigate metabolic effects of conditioned medium from osteoblasts (OB-CM) on myotubes and vice versa. Human skeletal muscle cells incubated with OB-CM showed increased glucose uptake and oxidation, and mRNA expression of the glucose transporter () , while fatty acid uptake and oxidation, and mRNA expression of the fatty acid transporter were decreased.

View Article and Find Full Text PDF

The roles of DGAT1 and DGAT2 in lipid metabolism and insulin responsiveness of human skeletal muscle were studied using cryosections and myotubes prepared from muscle biopsies from control, athlete, and impaired glucose regulation (IGR) cohorts of men. The previously observed increases in intramuscular triacylglycerol (IMTG) in athletes and IGR were shown to be related to an increase in lipid droplet (LD) area in type I fibers in athletes but, conversely, in type II fibers in IGR subjects. Specific inhibition of both diacylglycerol acyltransferase (DGAT) 1 and 2 decreased fatty acid (FA) uptake by myotubes, whereas only DGAT2 inhibition also decreased fatty acid oxidation.

View Article and Find Full Text PDF

Transient potential (TRP) ion channels expressed in primary sensory neurons act as the initial detectors of environmental cold and heat, information which controls muscle energy expenditure. We hypothesize that non-neuronal TRPs have direct cellular responses to thermal exposure, also affecting cellular metabolism. In the present study we show expression of TRPA1, TRPM8 and TRPV1 in rat skeletal muscle and human primary myotubes by qPCR.

View Article and Find Full Text PDF

Skeletal muscle is a major contributor to whole-body energy homeostasis and the utilization of fatty acids and glucose. At present, 2D cell models have been the most used cellular models to study skeletal muscle energy metabolism. However, the transferability of the results to might be limited.

View Article and Find Full Text PDF

Adipose tissue is one of the main regulative sites for energy metabolism. Excess lipid storage and expansion of white adipose tissue (WAT) is the primary contributor to obesity, a strong predisposing factor for development of insulin resistance. Sentrin-specific protease (SENP) 2 has been shown to play a role in metabolism in murine fat and skeletal muscle cells, and we have previously demonstrated its role in energy metabolism of human skeletal muscle cells.

View Article and Find Full Text PDF

Obesity and physical inactivity have a profound impact on skeletal muscle metabolism. In the present work, we have investigated differences in protein expression and energy metabolism in primary human skeletal muscle cells established from lean donors (BMI<25 kg/m) and individuals with obesity (BMI>30 kg/m). Furthermore, we have studied the effect of fatty acid pretreatment on energy metabolism in myotubes from these donor groups.

View Article and Find Full Text PDF

Metabolic alterations occurring in cancer cells have been seen to also occur in other tissues than cancerous tissue. For instance, cachexia, peripheral insulin resistance, or both are commonly seen in patients with cancer. We explored differences in substrate use in myotubes conditioned with the medium from a pancreatic cancer cell line, PANC-1, or primary human pancreatic cells, hPECs.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction is a hallmark of both critical illness and propofol infusion syndrome and its severity seems to be proportional to the doses of noradrenaline, which patients are receiving. We comprehensively studied the effects of noradrenaline on cellular bioenergetics and mitochondrial biology in human skeletal muscle cells with and without propofol-induced mitochondrial dysfunction.

Methods: Human skeletal muscle cells were isolated from vastus lateralis biopsies from patients undergoing elective hip replacement surgery (n = 14) or healthy volunteers (n = 4).

View Article and Find Full Text PDF

Work in cold environments may have a significant impact on occupational health. In these and similar situations, cold exposure localized to the extremities may reduce the temperature of underlying tissues. To investigate the molecular effects of cold exposure in muscle, and since adequate methods were missing, we established two experimental cold exposure models: 1) exposure to cold (18°C) or control temperature (37°C) of cultured human skeletal muscle cells (myotubes); and 2) unilateral cold exposure of hind limb skeletal muscle in anesthetized rats (intramuscular temperature 18°C), with contralateral control (37°C).

View Article and Find Full Text PDF

Electrical pulse stimulation (EPS) has proven to be a useful tool to interrogate cell-specific responses to muscle contraction. In the present study, we aimed to uncover networks of signaling pathways and regulatory molecules responsible for the metabolic effects of exercise in human skeletal muscle cells exposed to chronic EPS. Differentiated myotubes from young male subjects were exposed to EPS protocol 1 (i.

View Article and Find Full Text PDF

Background: Recent studies have highlighted that uncoupling of sarco-/endoplasmic reticulum Ca-ATPase (SERCA) by sarcolipin (SLN) increases ATP consumption and contributes to heat liberation. Exploiting this thermogenic mechanism in skeletal muscle may provide an attractive strategy to counteract obesity and associated metabolic disorders. In the present study, we have investigated the role of SLN on substrate metabolism in human skeletal muscle cells.

View Article and Find Full Text PDF

Skeletal muscle plays an important role in glycaemic control and metabolic homeostasis, making it a tissue of interest with respect to type 2 diabetes mellitus. The aim of the present study was to determine if ligands of Toll-like receptors (TLRs) could have an impact on energy metabolism and myokine expression and secretion in cultured human skeletal muscle cells. The myotubes expressed mRNA for TLRs 1-6.

View Article and Find Full Text PDF

Sentrin-specific protease (SENP) 2 has been suggested as a possible novel drug target for the treatment of obesity and type 2 diabetes mellitus after observations of a palmitate-induced increase in SENP2 that lead to increased fatty acid oxidation and improved insulin sensitivity in skeletal muscle cells from mice. However, no precedent research has examined the role of SENP2 in human skeletal muscle cells. In the present work, we have investigated the impact of SENP2 on fatty acid and glucose metabolism as well as insulin sensitivity in human skeletal muscle using cultured primary human myotubes.

View Article and Find Full Text PDF

Background And Objective: A number of studies have highlighted muscle-specific mechanisms of thermogenesis involving futile cycling of Ca driven by sarco (endo)plasmic reticulum Ca-ATPase (SERCA) and generating heat from ATP hydrolysis to be a promising strategy to counteract obesity and metabolic dysfunction. However, to the best of our knowledge, no experimental studies concerning the metabolic effects of pharmacologically targeting SERCA in human skeletal muscle cells have been reported. Thus, in the present study, we aimed to explore the effects of SERCA-activating compound, CDN1163, on energy metabolism in differentiated human skeletal muscle cells (myotubes).

View Article and Find Full Text PDF

Objective: studies have reported several beneficial metabolic effects of β-adrenergic receptor agonist administration in skeletal muscle, including increased glucose uptake, fatty acid metabolism, lipolysis and mitochondrial biogenesis. Although these effects have been widely studied , the data are limited to mouse and rat cell lines. Therefore, we sought to discover the effects of the β-adrenergic receptor agonist terbutaline on metabolism and protein synthesis in human primary skeletal muscle cells.

View Article and Find Full Text PDF

Proteins secreted from skeletal muscle serving a signalling role have been termed myokines. Many of the myokines are exercise factors, produced and released in response to muscle activity. Cold exposures affecting muscle may occur in recreational, occupational and therapeutic settings.

View Article and Find Full Text PDF
Article Synopsis
  • Denervation reduces Na+,K+-ATPase (NKA) levels in skeletal muscle, while reinnervation boosts it; myoblasts and myotubes typically do not contract without neurons, affecting NKA expression.
  • Differentiation of myoblasts into myotubes under low serum enhances markers like NKAα2 and FXYD1 while decreasing FXYD5, and innervated myotubes start contracting after about a week.
  • Long-term co-culture increases NKA and FXYD protein levels, while electrical pulse stimulation promotes NKAβ and FXYD expression; however, innervation isn't necessary for the upregulation of specific NKA and FXYD mRNA in myotubes.
View Article and Find Full Text PDF

Background: Population-based pharmaco-epidemiologic studies are used to assess postmarketing drug safety and discover beneficial effects of off-label drug use. We conducted a drug-wide association study (DWAS) to screen for associations between prescription drugs and cancer risk.

Methods: This registry-based, nested case-control study, 1:10 matched on age, sex, and date of diagnosis of cases, comprises approximately 2 million Norwegian residents, including their drug history from 2004 to 2014.

View Article and Find Full Text PDF

Primary human myotubes represent an alternative system to intact skeletal muscle for the study of human diseases related to changes in muscle energy metabolism. This work aimed to study if fatty acid and glucose metabolism in human myotubes in vitro were related to muscle of origin, donor gender, age, or body mass index (BMI). Myotubes from a total of 82 donors were established from three different skeletal muscles, i.

View Article and Find Full Text PDF

Contraction-induced adaptations in skeletal muscles are well characterized in vivo, but the underlying cellular mechanisms are still not completely understood. Cultured human myotubes represent an essential model system for human skeletal muscle that can be modulated ex vivo, but they are quiescent and do not contract unless being stimulated. Stimulation can be achieved by innervation of human myotubes in vitro by co-culturing with embryonic rat spinal cord, or by replacing motor neuron activation by electrical pulse stimulation (EPS).

View Article and Find Full Text PDF