Seagrass meadows are well-known for their capacity to capture and store blue carbon in sediments. However carbon stocks vary significantly between meadows, spanning more than three orders of magnitude on both local and global scales. Understanding the drivers of seagrass carbon stocks could help improve strategies for incorporating blue carbon into management plans.
View Article and Find Full Text PDFAerial drone imaging is an efficient tool for mapping and monitoring of coastal habitats at high spatial and temporal resolution. Specifically, drone imaging allows for time- and cost-efficient mapping covering larger areas than traditional mapping and monitoring techniques, while also providing more detailed information than those from airplanes and satellites, enabling for example to differentiate various types of coastal vegetation. Here, we present a systematic method for shallow water habitat classification based on drone imagery.
View Article and Find Full Text PDFLakes worldwide are affected by multiple stressors, including climate change. This includes massive loading of both nutrients and humic substances to lakes during extreme weather events, which also may disrupt thermal stratification. Since multi-stressor effects vary widely in space and time, their combined ecological impacts remain difficult to predict.
View Article and Find Full Text PDFMacroalgae and seagrass wash ashore by tidal waters and episodic events and create an ocean-to-land transport of carbon and nutrients. On land, these deposits (beach wrack) are consumed by macrofauna, remineralized by microorganisms, or washed back to the sea, during which recycling of carbon and nitrogen affect the biochemical cycles in coastal zones. Manual quantification of beach wracks is time-consuming and often difficult due to complex topography and remote locations.
View Article and Find Full Text PDFSubmarine tailing disposal (STD) in fjords from land-based mines is common practice in Norway and takes place in other regions worldwide. We synthesize the results of a multidisciplinary programme on environmental impacts of STDs in Norwegian fjords, providing new knowledge that can be applied to assess and mitigate impact of tailing disposal globally, both for submarine and deep-sea activities. Detailed geological seafloor mapping provided data on natural sedimentation to monitor depositional processes on the seafloor.
View Article and Find Full Text PDFAn experiment was conducted to study and compare macrofaunal colonization of thin layers of mine tailings. Experimental boxes filled with marine sediments capped with mine tailings were placed on the seabed and subject to colonization for six and twelve months. Three Norwegian mine tailings, representative of major production processes, were used.
View Article and Find Full Text PDFOngoing changes along the northeastern Atlantic coastline provide an opportunity to explore the influence of climate change and multitrophic interactions on the recovery of kelp. Here, vast areas of sea urchin-dominated barren grounds have shifted back to kelp forests, in parallel with changes in sea temperature and predator abundances. We have compiled data from studies covering more than 1,500-km coastline in northern Norway.
View Article and Find Full Text PDFA mesocosm experiment with intact benthic communities was conducted to evaluate the effects of mine tailings on benthic community structure and biogeochemical processes. Two types of tailings were supplied from process plants using flotation and flocculation chemicals, while a third type was absent of added chemicals. All tailings impacted the sediment community at thin layers, and through more mechanisms than merely hypersedimentation.
View Article and Find Full Text PDFA test deployment of a time-lapse camera lander in the deep Oslofjord (431 m) was used to obtain initial information on the response of benthic fauna to macroalgal debris. Three macroalgal species were used on the lander baited plate: Fucus serratus, Saccharina latissima and Laminaria hyperborea and observed during 41.5 hours.
View Article and Find Full Text PDFBackground: The green sea urchin Strongylocentrotus droebachiensis has a wide circumpolar distribution and plays a key role in coastal ecosystems worldwide by destructively grazing macroalgae beds and turn them into marine deserts, so-called barren grounds. In the past decades, large established kelp forests have been overgrazed and transformed to such barren grounds on the Norwegian coast. This has important repercussions for the coastal diversity and production, including reproduction of several fish species relying on the kelp forests as nurseries.
View Article and Find Full Text PDFThe spatial distribution of kelp (Laminaria hyperborea) and sea urchins (Strongylocentrotus droebachiensis) in the NE Atlantic are highly related to physical factors and to temporal changes in temperature. On a large scale, we identified borders for kelp recovery and sea urchin persistence along the north-south gradient. Sea urchin persistence was also related to the coast-ocean gradient.
View Article and Find Full Text PDF