The application of precision livestock farming (PLF) technologies will underpin new strategies to support the control of livestock disease. However, PLF technology is underexploited within the sheep industry compared to other livestock sectors, and research is essential to identify opportunities for PLF applications. These opportunities include the control of endemic sheep disease such as parasitic gastroenteritis, caused by gastrointestinal nematode infections, which is estimated to cost the European sheep industry EUR 120 million annually.
View Article and Find Full Text PDFRumen fluke (Calicophoron daubneyi) has emerged as a prominent parasite of ruminants in Europe over the past decades. Epidemiological questions remain regarding this observed increase in prevalence as well as the prospect for future paramphistomosis risk. This study aimed to identify factors associated with the temporal−spatial prevalence of rumen fluke as measured by veterinary surveillance in a temperate region using zero-inflated negative binomial mixed modelling.
View Article and Find Full Text PDFEnvironmental DNA (eDNA) surveying has potential to become a powerful tool for sustainable parasite control. As trematode parasites require an intermediate snail host that is often aquatic or amphibious to fulfil their lifecycle, water-based eDNA analyses can be used to screen habitats for the presence of snail hosts and identify trematode infection risk areas. The aim of this study was to identify climatic and environmental factors associated with the detection of Galba truncatula eDNA.
View Article and Find Full Text PDFFascioliasis causes significant economic losses and is a constant challenge to livestock farmers globally. Fluke faecal egg counts (flukeFECs) are a simple, non-invasive method used to detect the presence of patent liver fluke infection. Many flukeFEC techniques exist but they vary in complexity, precision and accuracy.
View Article and Find Full Text PDF(Brachypodium) is a non-domesticated model grass species that can be used to test if variation in genetic sequence or methylation are linked to environmental differences. To assess this, we collected seeds from 12 sites within five climatically distinct regions of Turkey. Seeds from each region were grown under standardized growth conditions in the UK to preserve methylated sequence variation.
View Article and Find Full Text PDFBackground: Increasing trematode prevalence and disease occurrence in livestock is a major concern. With the global spread of anthelmintic resistant trematodes, future control strategies must incorporate approaches focusing on avoidance of infection. The reliance of trematodes on intermediate snail hosts to successfully complete their life-cycle means livestock infections are linked to the availability of respective snail populations.
View Article and Find Full Text PDFReports of Calicophoron daubneyi infecting livestock in Europe have increased substantially over the past decade; however, there has not been an estimate of its farm level prevalence and associated risk factors in the UK. Here, the prevalence of C. daubneyi across 100 participating Welsh farms was recorded, with climate, environmental and management factors attained for each farm and used to create logistic regression models explaining its prevalence.
View Article and Find Full Text PDFClimate change has the potential to impair livestock health, with consequences for animal welfare, productivity, greenhouse gas emissions, and human livelihoods and health. Modelling has an important role in assessing the impacts of climate change on livestock systems and the efficacy of potential adaptation strategies, to support decision making for more efficient, resilient and sustainable production. However, a coherent set of challenges and research priorities for modelling livestock health and pathogens under climate change has not previously been available.
View Article and Find Full Text PDFBackground: There is increasing evidence that the geographic distribution of tick species is changing. Whilst correlative Species Distribution Models (SDMs) have been used to predict areas that are potentially suitable for ticks, models have often been assessed without due consideration for spatial patterns in the data that may inflate the influence of predictor variables on species distributions. This study used null models to rigorously evaluate the role of climate and the potential for climate change to affect future climate suitability for eight European tick species, including several important disease vectors.
View Article and Find Full Text PDF