Publications by authors named "Heeter R"

Article Synopsis
  • The National Ignition Facility is exploring the use of Agfa D4 film to enhance spectral resolution for x-ray imaging in high-energy-density experiments.
  • Characterization of the film is being conducted using a Manson x-ray source with six different anodes, building on previous research to improve analysis methods.
  • Results from the Agfa D4 film characterization at both the Manson source and the Stanford Synchrotron Radiation Lightsource Beamline 16-2 are compared, highlighting improvements and reduced uncertainties in the characterization process.
View Article and Find Full Text PDF

Opacity measurements are being carried out at the Z-facility at Sandia National Laboratories and at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. The current soft x-ray Opacity Spectrometer (OpSpec) used on the NIF uses two elliptically bent crystals in time-integrated mode on either an image plate or a film. Plans are under way to expand these opacity measurements into a mode of time-resolved detection, called OpSpecTR.

View Article and Find Full Text PDF
Article Synopsis
  • - The text discusses the design of sagittally focusing x-ray crystal spectrometers that use elliptical profiles to enhance plasma diagnostics, especially in scenarios with high neutron emissions.
  • - These spectrometers are designed with adjustable radii of curvature to focus on different photon energies and optimize the arrangement to minimize neutron background interference.
  • - Two spectrometer designs are proposed: one for x-ray continuum spectroscopy with high magnification and limited resolution, and another for time-resolved spectroscopy with high demagnification aimed at improving spectral resolution, which have been validated through ray tracing.
View Article and Find Full Text PDF

X-ray opacity measurements on the National Ignition Facility (NIF) are in the process of reproducing earlier measurements from the Sandia Z Facility, in particular for oxygen and iron plasmas. These measurements have the potential to revise our understanding of the "solar problem" and of the hot degenerate Q class white dwarf structure by probing plasma conditions near the base of their convection zones. Accurate opacity measurements using soft x-ray Bragg crystal spectrometers require correction for higher-order diffraction effects.

View Article and Find Full Text PDF

A new time-resolved opacity spectrometer (OpSpecTR) is currently under development for the National Ignition Facility (NIF) opacity campaign. The spectrometer utilizes Icarus version 2 (IV2) hybridized complementary metal-oxide-semiconductor sensors to collect gated data at the time of the opacity transmission signal, unlocking the ability to collect higher-temperature measurements on NIF. Experimental conditions to achieve higher temperatures are feasible; however, backgrounds will dominate the data collected by the current time-integrating opacity spectrometer.

View Article and Find Full Text PDF
Article Synopsis
  • * This experiment produced 2.05 MJ of laser energy, resulting in 3.1 MJ of total fusion yield, which exceeds the Lawson criterion for ignition, demonstrating a key milestone in fusion research.
  • * The report details the advancements in target design, laser technology, and experimental methods that contributed to this historic achievement, validating over five decades of research in laboratory fusion.
View Article and Find Full Text PDF

The goal of the Xflows experimental campaign is to study the radiation flow on the National Ignition Facility (NIF) reproducing the sensitivity of the temperature (±8 eV, ±23 μm) and density (±11 mg/cc) measurements of the COAX platform [Johns et al., High Energy Density Phys. 39, 100939 (2021); Fryer et al.

View Article and Find Full Text PDF

The Opacity Spectrometer (OpSpec) used in the National Ignition Facility's opacity experiments measures x-ray spectra from 0.9 to 2.1 keV from the different experimental regions: the backlight source, emission source, and the absorption region with the transmission calculated from these regions.

View Article and Find Full Text PDF

The Opacity Platform on the National Ignition Facility (NIF) has been developed to measure opacities at varying densities and temperatures relevant to the solar interior and thermal cooling rates in white dwarf stars. The typical temperatures reached at NIF range between 150 and 210 eV, which allow these measurements to be performed experimentally. The captured opacities are crucial to validating radiation-hydrodynamic models that are used in astrophysics.

View Article and Find Full Text PDF

When compared with the National Ignition Facility's (NIF) original soft x-ray opacity spectrometer, which used a convex cylindrical design, an elliptically shaped design has helped to increase the signal-to-noise ratio and eliminated nearly all reflections from alternate crystal planes. The success of the elliptical geometry in the opacity experiments has driven a new elliptical geometry crystal with a spectral range covering 520-1100 eV. When coupled with the primary elliptical geometry, which spans 1000-2100 eV, the new sub-keV elliptical geometry helps to cover the full iron L-shell and major oxygen transitions important to solar opacity experimentation.

View Article and Find Full Text PDF

K-shell x-ray emission spectroscopy is a standard tool used to diagnose the plasma conditions created in high-energy-density physics experiments. In the simplest approach, the emissivity-weighted average temperature of the plasma can be extracted by fitting an emission spectrum to a single temperature condition. It is known, however, that a range of plasma conditions can contribute to the measured spectra due to a combination of the evolution of the sample and spatial gradients.

View Article and Find Full Text PDF
Article Synopsis
  • * In inertially confined fusion, ignition allows the fusion process to spread into surrounding fuel, potentially leading to higher energy output.
  • * Recent experiments at the National Ignition Facility achieved capsule gains of 5.8 and approached ignition, even though "scientific breakeven" has not yet been fully realized.
View Article and Find Full Text PDF

A plasma mirror platform was developed for the OMEGA-EP facility to redirect beams, thus enabling more flexible experimental configurations as well as a platform that can be used in the future to improve laser contrast. The plasma mirror reflected a short pulse focusing beam at 22.5° angle of incidence onto a 12.

View Article and Find Full Text PDF

X-ray films remain a key asset for high-resolution x-ray spectral imaging in high-energy-density experiments conducted at the National Ignition Facility (NIF). The soft x-ray Opacity Spectrometer (OpSpec) fielded at the NIF has an elliptically shaped crystal design that measures x rays in the 900-2100 eV range and currently uses an image plate as the detecting medium. However, Agfa D4 and D3sc x-ray films' higher spatial resolution provides increased spectral resolution to the data over the IP-TR image plates, driving the desire for regular use of x-ray film as a detecting medium.

View Article and Find Full Text PDF

The soft x-ray Opacity Spectrometer (OpSpec) used on the National Ignition Facility (NIF) has recently incorporated an elliptically shaped crystal. The original OpSpec used two convex cylindrical crystals for time-integrated measurements of point-projection spectra from 540 to 2100 eV. However, with the convex geometry, the low-energy portion of the spectrum suffered from high backgrounds due to scattered x-rays as well as reflections from alternate crystal planes.

View Article and Find Full Text PDF

In this work, we present the measurement of L-band emission from buried Sc/V targets in experiments performed at the OMEGA laser facility. The goal of these experiments was to study non-local thermodynamic equilibrium plasmas and benchmark atomic physics codes. The L-band emission was measured simultaneously by the time resolved DANTE power diagnostic and the recently fielded time integrated Soreq-Transmission Grating Spectrometer (TGS) diagnostic.

View Article and Find Full Text PDF

The Opacity Platform on the National Ignition Facility (NIF) has been developed to measure iron opacities at varying densities and temperatures relevant to the solar interior and to verify recent experimental results obtained at the Sandia Z-machine, that diverge from theory. The first set of NIF experiments collected iron opacity data at ∼150 eV to 160 eV and an electron density of ∼7 × 10 cm, with a goal to study temperatures up to ∼210 eV, with electron densities of up to ∼3 × 10 cm. Among several techniques used to infer the temperature of the heated Fe sample, the absolutely calibrated DANTE-2 filtered diode array routinely provides measurements of the hohlraum conditions near the sample.

View Article and Find Full Text PDF

In a plasma of sufficient size and density, photons emitted within the system have a probability of being reabsorbed and reemitted multiple times-a phenomenon known in astrophysics as resonant scattering. This effect alters the ratio of optically thick to optically thin lines, depending on the plasma geometry and viewing angle, and has significant implications for the spectra observed in a number of astrophysical scenarios, but has not previously been studied in a controlled laboratory plasma. We demonstrate the effect in the x-ray spectra emitted by cylindrical plasmas generated by high power laser irradiation, and the results confirm the geometrical interpretation of resonant scattering.

View Article and Find Full Text PDF

Filtered diode array spectrometers are routinely employed to infer the temporal evolution of spectral power from x-ray sources, but uniquely extracting spectral content from a finite set of broad, spectrally overlapping channel spectral sensitivities is decidedly nontrivial in these under-determined systems. We present the use of genetic algorithms to reconstruct a probabilistic spectral intensity distribution and compare to the traditional approach most commonly found in the literature. Unlike many of the previously published models, spectral reconstructions from this approach are neither limited by basis functional forms nor do they require a priori spectral knowledge.

View Article and Find Full Text PDF

Here we propose a pump-probe X-ray absorption spectroscopy temperature measurement technique appropriate for matter having temperature in the range of 10 to a few 100 eV and density up to solid density. Atomic modeling simulations indicate that for various low- to mid-Z materials in this range the energy and optical depth of bound-bound and bound-free absorption features are sensitive to temperature. We discuss sample thickness and tamp layer considerations.

View Article and Find Full Text PDF

K-shell x-ray spectra of Li- to H-like ions have long been used to determine plasma conditions. The ratio of integrated line intensities is used to determine the temperature. At the density of non-local thermal dynamic equilibrium (NLTE) plasmas (n ≈ 10 cm), the K-shell spectrum is not very sensitive to density.

View Article and Find Full Text PDF

A point-projection soft X-ray Opacity Spectrometer (OpSpec) has been implemented to measure X-ray spectra from ∼1 to 2 keV on the National Ignition Facility (NIF). Measurement of such soft X-rays with open-aperture point-projection detectors is challenging because only very thin filters may be used to shield the detector from the hostile environment. OpSpec diffracts X-rays from 540 to 2100 eV off a potassium (or rubidium) acid phthalate (KAP or RbAP) crystal onto either image plates or, most recently, X-ray films.

View Article and Find Full Text PDF

Direct drive implosions of plastic capsules have been performed at the National Ignition Facility to provide a broad-spectrum (500-2000 eV) X-ray continuum source for X-ray transmission spectroscopy. The source was developed for the high-temperature plasma opacity experimental platform. Initial experiments using 2.

View Article and Find Full Text PDF

A proton backlighting platform has been developed for the study of strong shock propagation in low-density systems in planar geometry. Electric fields at the converging shock front in inertial confinement fusion implosions have been previously observed, demonstrating the presence of-and the need to understand-strong electric fields not modeled in standard radiation-hydrodynamic simulations. In this planar configuration, long-pulse ultraviolet lasers are used to drive a strong shock into a gas-cell target, while a short-pulse proton backlighter side-on radiographs the shock propagation.

View Article and Find Full Text PDF

We report experimental results and simulations showing efficient laser energy coupling into plasmas at conditions relevant to the magnetized liner inertial fusion (MagLIF) concept. In MagLIF, to limit convergence and increase the hydrodynamic stability of the implosion, the fuel must be efficiently preheated. To determine the efficiency and physics of preheating by a laser, an Ar plasma with n_{e}/n_{crit}∼0.

View Article and Find Full Text PDF