Electron-transporting transparent conducting oxides (TCOs) are a commercial reality, however, hole-transporting counterparts are far more challenging because of limited material design. Here, we propose a strategy for enhancing the hole conductivity without deteriorating the band gap () and workfunction () by Cu incorporation in a strongly correlated NiWO insulator. The optimal Cu-doped NiWO (CuNiWO) exhibits a resistivity reduction of ∼10 times NiWO as well as band-like charge transport with the hole mobility approaching 7 cm V s at 200 K, a deep of 5.
View Article and Find Full Text PDFDeformable alternating-current electroluminescent (ACEL) devices are of increasing interest because of their potential to drive innovation in soft optoelectronics. Despite the research focus on efficient white ACEL devices, achieving deformable devices with high luminance remains difficult. In this study, this challenge is addressed by fabricating white ACEL devices using color-conversion materials, transparent and durable hydrogel electrodes, and high-k nanoparticles.
View Article and Find Full Text PDFThe escalating global industrial expansion has led to the extensive release of organic compounds into water bodies, resulting in substantial pollution and posing severe threats to both human health and the ecosystem. Among common micropollutants, bisphenol A (MP-BA) has emerged as a significant endocrine-disrupting chemical with potential adverse effects on human health and the environment. This study aims to develop an efficient photocatalyst, specifically by incorporating palladium-doped graphitic carbon nitride (Pd@GCN), to eliminate MP-BA pollutants present in industrial wastewater.
View Article and Find Full Text PDFJ Phys Chem Lett
February 2024
Over the last two decades, quantum-dot light-emitting diodes (QLEDs), also known as quantum dot (QD) electroluminescent devices, have gained prominence in next-generation display technologies, positioning them as potential alternatives to organic light-emitting diodes. Nonetheless, challenges persist in enhancing key device performances such as efficiency and lifetime, while those of blue QLEDs lag behind compared with green and red counterparts. In this Perspective, we discuss key factors affecting the photoluminescence characteristics of environmentally benign blue-emissive ternary ZnSeTe QDs, including composition, core/shell heterostructure, and surface ligand.
View Article and Find Full Text PDFCircularly polarized light (CPL) is a crucial light source with a wide variety of potential applications such as magnetic recording, and 3D display. Here, core-shell heterostructured perovskite quantum dots (QDs) for room-temperature spin-polarized light-emitting diodes (spin-LEDs) are developed. Specifically, a 2D chiral perovskite shell is deposited onto the achiral 3D inorganic perovskite (CsPbBr ) core.
View Article and Find Full Text PDF(OF) phytochemicals have received considerable attention because of their health benefits. However, the structure-activity relationship between saponin and flavonoid antioxidant compounds among secondary metabolites has rarely been reported. In a molecular docking study, selected compounds from both callus (OFC) and OF ethanol extract were found to be involved in Toll-like receptor 4 and mitogen-activated protein kinase (MAPK) signaling pathways.
View Article and Find Full Text PDFQuantum dot light-emitting diodes (QLEDs) are promising devices for display applications. Polyethylenedioxythiophene:polystyrene sulfonate (PEDOT:PSS) is a common hole injection layer (HIL) material in optoelectronic devices because of its high conductivity and high work function. Nevertheless, PEDOT:PSS-based QLEDs have a high energy barrier for hole injection, which results in low device efficiency.
View Article and Find Full Text PDFThis paper aims to discuss the key accomplishments and further prospects of active-matrix (AM) quantum-dot (QD) light-emitting diodes (QLEDs) display. We present an overview and state-of-the-art of QLEDs as a frontplane and non-Si-based thin-film transistors (TFTs) as a backplane to meet the requirements for the next-generation displays, such as flexibility, transparency, low power consumption, fast response, high efficiency, and operational reliability. After a brief introduction, we first review the research on non-Si-based TFTs using metal oxides, transition metal dichalcogenides, and semiconducting carbon nanotubes as the driving unit of display devices.
View Article and Find Full Text PDFIn typical color-by-blue mode-based quantum dot (QD) display devices, only part of the blue excitation light is absorbed by QD emitters, thus it is accompanied by the leakage of blue light through the devices. To address this issue, we offer, for the first time, the applicability of AuAg alloy nanoparticles (NPs) as effective blue light absorbers in InP QD-based color-by-blue platforms. For this, high-quality fluorescent green and red InP QDs with a double shell scheme of ZnSe/ZnS were synthesized and embedded in a transparent polymer film.
View Article and Find Full Text PDFFlat metasurfaces with subwavelength meta-atoms can be designed to manipulate the electromagnetic parameters of incident light and enable unusual light-matter interactions. Although hydrogel-based metasurfaces have the potential to control optical properties dynamically in response to environmental conditions, the pattern resolution of these surfaces has been limited to microscale features or larger, limiting capabilities at the nanoscale, and precluding effective use in metamaterials. This paper reports a general approach to developing tunable plasmonic metasurfaces with hydrogel meta-atoms at the subwavelength scale.
View Article and Find Full Text PDFThe main issue in developing a quantum dot light-emitting diode (QLED) display lies in successfully replacing heavy metals with environmentally benign materials while maintaining high-quality device performance. Nonradiative Auger recombination is one of the major limiting factors of QLED performance and should ideally be suppressed. This study scrutinizes the effects of the shell structure and composition on photoluminescence (PL) properties of InP/ZnSeS/ZnS quantum dots (QDs) through ensemble and single-dot spectroscopic analyses.
View Article and Find Full Text PDFSalivary gland-specific transcriptomes of nine heteropteran insects with distinct feeding strategies (predaceous, hematophagous, and phytophagous) were analyzed and annotated to compare and identify the venom components as well as their expression profiles. The transcriptional abundance of venom genes was verified via quantitative real-time PCR. Hierarchical clustering of 30 representative differentially expressed venom genes from the nine heteropteran species revealed unique groups of salivary gland-specific genes depending on their feeding strategy.
View Article and Find Full Text PDFis a new open section of aimed at publishing original and review articles on novel scientific and applied research that significantly contribute to the understanding and discovery of quantum materials and related phenomena, functions, and applications [...
View Article and Find Full Text PDFThe electroluminescent (EL) performances of quantum dot-light-emitting diodes (QLEDs) based on either high-quality CdSe- or Cd-free quantum dots (QDs) have been greatly improved during the last decade, exclusively aiming at monochromatic devices for display applications. Meanwhile, work on white lighting QLEDs integrated particularly with Cd-free QDs remains highly underdeveloped. In this work, the solution-processed fabrication of tricolored white lighting QLEDs comprising three environmentally benign primary color emitters of II-VI blue and green ZnSeTe and I-III-VI red Zn-Cu-In-S (ZCIS) QDs is explored.
View Article and Find Full Text PDFNo effective cryopreservation technique exists for fish eggs and embryos; thus, the cryopreservation of germ cells (spermatogonia or oogonia) and subsequent generation of eggs and sperm would be an alternative solution for the long-term preservation of piscine genetic resources. Nevertheless, in our previous study using rainbow trout, we showed that recipients transplanted with XY spermatogonia or XX oogonia produced unnatural sex-biased F1 offspring. To overcome these obstacles, we transplanted immature germ cells (XX oogonia or XY spermatogonia; frozen for 33 days) into the body cavities of triploid hatchlings, and the transplanted germ cells possessed a high capacity for differentiating into eggs and sperm in the ovaries and testes of recipients.
View Article and Find Full Text PDFThe recent pandemic of coronavirus disease 2019 (COVID-19) has increased demand for chemical disinfectants, which can be potentially hazardous to users. Here, we suggest that the cell-free supernatant from NIBR97, including novel bacteriocins, has potential as a natural alternative to chemical disinfectants. It exhibits significant antibacterial activities against a broad range of pathogens, and was observed by scanning electron microscopy (SEM) to cause cellular lysis through pore formation in bacterial membranes, implying that its antibacterial activity may be mediated by peptides or proteins and supported by proteinase K treatment.
View Article and Find Full Text PDFBacteriocins are functionally diverse toxins produced by most microbes and are potent antimicrobial peptides (AMPs) for bacterial ghosts as next generation vaccines. Here, we first report that the AMPs secreted from effectively form ghosts of pathogenic bacteria and are identified as diverse bacteriocins, including novel ones. In detail, a cell-free supernatant from exhibited antimicrobial activities against pathogenic bacteria and was observed to effectively cause cellular lysis through pore formation in the bacterial membrane using scanning electron microscopy (SEM).
View Article and Find Full Text PDFBroadband near-infrared CuInS/ZnS quantum dots with up to 94.8% quantum yield were synthesized with fast precursor decomposition leading to monomer conversion improvement. In the mini-LED package, the device showed high power efficiency and stability was also demonstrated with a penetration test and vein imaging showing its potential biomedical application in the theranostics field.
View Article and Find Full Text PDFCadmium-free quantum dots (QDs) are attracting considerable research attention because of their low toxicity. However, the bandgap of most cadmium-free QDs avoids the pure-blue region, which leads to difficulty in realizing pure-blue quantum-dot light-emitting diodes (QLEDs). In this work, we successfully tuned the emission wavelength of ZnSe/ZnS quantum dots from the violet region (∼420 nm) to the pure-blue region (450-460 nm) by doping Te into the ZnSe core.
View Article and Find Full Text PDFExposure to particulate matter (PM) in ambient air is known to increase the risk of cardiovascular disorders and mortality. The cytotoxicity of PM is mainly due to the abnormal increase of reactive oxygen species (ROS), which damage cellular components such as DNA, RNA, and proteins. The correlation between PM exposure and human disorders, including mortality, is based on long-term exposure.
View Article and Find Full Text PDFIt is the unique size-dependent band gap of quantum dots (QDs) that makes them so special in various applications. They have attracted great interest, especially in optoelectronic fields such as light emitting diodes and photovoltaic cells, because their photoluminescent characteristics can be significantly improved via optimization of the processes by which they are synthesized. Control of their core/shell heterostructures is especially important and advantageous.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2019
Considering a strict global environmental regulation, fluorescent quantum dots (QDs) as key visible emitters in the next-generation display field should be compositionally non-Cd. When compared to green and red emitters obtainable from size-controlled InP QDs, development of non-Cd blue QDs remains stagnant. Herein, we explore the synthesis of non-Cd, ZnSe-based QDs with binary and ternary compositions toward blue photoluminescence (PL).
View Article and Find Full Text PDF