Publications by authors named "Heesun Cheong"

Autophagy is an essential lysosome-mediated degradation pathway that maintains cellular homeostasis and viability in response to various intra- and extracellular stresses. Mitophagy is a type of autophagy that is involved in the intricate removal of dysfunctional mitochondria during conditions of metabolic stress. In this review, we describe the multifaceted roles of autophagy and mitophagy in normal physiology and the field of cancer biology.

View Article and Find Full Text PDF

Autophagy is essential for organismal development, maintenance of energy homeostasis, and quality control of organelles and proteins. As a selective form of autophagy, mitophagy is necessary for effectively eliminating dysfunctional mitochondria. Both autophagy and mitophagy are linked with tumor progression and inhibition.

View Article and Find Full Text PDF

Mitochondrial methionyl-tRNA synthetase (MARS2) canonically mediates the formation of fMet-tRNA for mitochondrial translation initiation. Mitochondrial calcium uniporter (MCU) is a major gate of Ca flux from cytosol into the mitochondrial matrix. We found that MARS2 interacts with MCU and stimulates mitochondrial Ca influx.

View Article and Find Full Text PDF

Acquisition of acquired chemoresistance during treatment cycles in urothelial carcinoma of the bladder (UCB) is the major cause of death through enhancing the risk of cancer progression and metastasis. Elevated glucose flux through the abnormal upregulation of O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) controls key signaling and metabolic pathways regulating diverse cancer cell phenotypes. This study showed that OGT expression levels in two human UCB cell models with acquired resistance to gemcitabine and paclitaxel were significantly upregulated compared with those in parental cells.

View Article and Find Full Text PDF

Autophagy is a critical cytoprotective mechanism against stress, which is initiated by the protein kinase Unc-51-like kinase 1 (ULK1) complex. Autophagy plays a role in both inhibiting the progression of diseases and facilitating pathogenesis, so it is critical to elucidate the mechanisms regulating individual components of the autophagy machinery under various conditions. Here, we examined whether ULK1 complex component autophagy-related protein 101 (ATG101) is downregulated via ubiquitination, and whether this in turn suppresses autophagy activity in cancer cells.

View Article and Find Full Text PDF

Purpose: To develop a hydrogel film containing bovine serum albumin (BSA)-coated silver nanoparticles (BSA/AgNP) and evaluate its applicability for topical photothermal treatment (PTT) of skin cancer.

Methods: BSA/AgNP-loaded hydrogel films were prepared and their swelling, bioadhesive, mechanical, and photothermal properties were characterized in vitro and in vivo.

Results: The synthesized BSA/AgNP exhibited a narrow size distribution with good size stability and, notably, possessed great photothermal activity that could stably maintain through repetitive laser irradiation.

View Article and Find Full Text PDF

Unc-51-like autophagy activating kinase 1 (ULK1), a mammalian homolog of the yeast kinase Atg1, has an essential role in autophagy induction. In nutrient and growth factor signaling, ULK1 activity is regulated by various posttranslational modifications, including phosphorylation, acetylation, and ubiquitination. We previously identified glycogen synthase kinase 3 beta (GSK3B) as an upstream regulator of insulin withdrawal-induced autophagy in adult hippocampal neural stem cells.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

MINERVA (melanoma invasion by ERK), also known as FAM129B, is a member of the FAM129 protein family, which is only present in vertebrates. MINERVA is involved in key signaling pathways regulating cell survival, proliferation and apoptosis and found upregulated in many types of cancer promoting invasion. However, the exact function of the protein remains elusive.

View Article and Find Full Text PDF

Purpose: Indocyanine green (ICG), a near infrared (NIR) dye clinically approved in medical diagnostics, possesses great heat conversion efficiency, which renders itself as an effective photosensitizer for photothermal therapy (PTT) of cancer. However, there remain bottleneck challenges for use in PTT, which are the poor photo and plasma stability of ICG. To address these problems, in this research, ICG-loaded silver nanoparticles were prepared and evaluated for the applicability as an effective agent for photothermal cancer therapy.

View Article and Find Full Text PDF

var. (UD) has widely been used in Korean traditional medicine for the treatment of various types of diseases including inflammation and skin wounds. The UD root bark powders possess gelling activity with an excellent capacity for absorbing water.

View Article and Find Full Text PDF

Radiotherapy (RT) is a major modality for cancer treatment, along with surgery and chemotherapy. Despite its therapeutic effect, the recurrence and metastasis of tumors due to the acquired resistance of cancer cells to RT remain significant clinical problems. Therefore, it is imperative to overcome radioresistance and improve radiosensitivity in cancer patients.

View Article and Find Full Text PDF

Macroautophagy/autophagy is a key catabolic process in which different cellular components are sequestered inside double-membrane vesicles called autophagosomes for subsequent degradation. In yeast, autophagosome formation occurs at the phagophore assembly site (PAS), a specific perivacuolar location that works as an organizing center for the recruitment of different autophagy-related (Atg) proteins. How the PAS is localized to the vacuolar periphery is not well understood.

View Article and Find Full Text PDF

Toxin peptides derived from the skin secretions of amphibians possess unique hypoglycemic activities. Many of these peptides share cationic and amphipathic structural similarities and appear to possess cell-penetrating abilities. The mechanism of their insulinotropic action is yet not elucidated, but they have shown great potential in regulating the blood glucose levels in animal models.

View Article and Find Full Text PDF

Objective: Radiation is known to induce autophagy in malignant glioma cells whether it is cytocidal or cytoprotective. Dexamethasone is frequently used to reduce tumor-associated brain edema, especially during radiation therapy. The purpose of the study was to determine whether and how dexamethasone affects autophagy in irradiated malignant glioma cells and to identify possible intervening molecular pathways.

View Article and Find Full Text PDF

In mammals, autophagosome formation is initiated by ULK1 via the posttranslational modification of this protein. However, the precise role of ULK1 ubiquitination in modulating autophagy is unknown. Here, we show that NEDD4L, an E3 ubiquitin ligase, binds ULK1 in pancreatic cancer cells.

View Article and Find Full Text PDF

Autophagy is a highly conserved cellular process in which cytoplasmic materials are degraded and recycled as energy sources when nutrient supplies are lacking. Established tumor cells require autophagy for cell growth and tumor promotion. In particular, the survival of pancreatic tumor cells appears to be strongly dependent on autophagy, referred to as autophagy addiction.

View Article and Find Full Text PDF

Background: Using a pathway-focused approach, we aimed to provide a subgroup-specific basis for finding novel therapeutic strategies and further refinement of the risk stratification in pediatric medulloblastoma.

Method: Based on genome-wide Cox regression and Gene Set Enrichment Analysis, we investigated prognosis-related signaling pathways and core genes in pediatric medulloblastoma subgroups using 530 patient data from Medulloblastoma Advanced Genomic International Consortium (MAGIC) project. We further examined the relationship between expression of the prognostic core genes and frequent chromosome aberrations using broad range copy number change data.

View Article and Find Full Text PDF

Autophagy is a cellular process that disrupts and uses unnecessary or malfunctioning components for cellular homeostasis. Evidence has shown a role for autophagy in tumor cell survival, but the molecular determinants that define sensitivity against autophagic regulation in cancers are not clear. Importantly, we found that breast cancer cells with low expression levels of a zinc-finger protein, ZNF143 (MCF7 sh-ZNF143), showed better survival than control cells (MCF7 sh-Control) under starvation, which was compromised with chloroquine, an autophagy inhibitor.

View Article and Find Full Text PDF

We investigated the intracellular metabolic fluxes of protein kinase CK2-activating (Cα OE) cells and role of lactate dehydrogenase A (LDHA) as a contributor of tumorigenesis after reprogrammed glucose metabolism. Facilitated aerobic glycolysis was confirmed via isotope tracer analysis, in which C-Glc or C-Gln was added to the media, following which metabolites converted from Cα OE cells were identified. We found a greater decrease in cell survival, colony-forming ability, migration, and Cα OE cell invasion under glucose (Glc)-depletion conditions than under glutamine (Gln)-depletion conditions.

View Article and Find Full Text PDF

Transglutaminase 2 (TGase 2) plays a key role in p53 regulation, depleting p53 tumor suppressor through autophagy in renal cell carcinoma. We found that microtubule-associated protein 1A/1B-light chain 3 (LC3), a hallmark of autophagy, were tightly associated with the level of TGase 2 in cancer cells. TGase 2 overexpression increased LC3 levels, and TGase 2 knockdown decreased LC3 levels in cancer cells.

View Article and Find Full Text PDF

Despite substantial advances in its treatment, brain cancer remains a life-threatening disease with a poor survival rate. The main challenges for the conventional chemotherapy include an insufficient efficacy of drugs and toxicity caused by their nonselective mode of action. Recently, great attention has been paid to highly potent macromolecules such as gelonin, a type 1 ribosome-inactivating protein that inhibits protein translation.

View Article and Find Full Text PDF

The initiation of macroautophagy/autophagy is tightly regulated by the upstream ULK1 kinase complex, which affects many downstream factors including the PtdIns3K complex. The phosphorylation of the right position at the right time on downstream molecules is governed by proper complex formation. One component of the ULK1 complex, ATG101, known as an accessory protein, is a stabilizer of ATG13 in cells.

View Article and Find Full Text PDF

Autophagy begins with the formation of autophagosomes, a process that depends on the activity of the serine/threonine kinase ULK1 (hATG1). Although earlier studies indicated that ULK1 activity is regulated by dynamic polyubiquitination, the deubiquitinase involved in the regulation of ULK1 remained unknown. In this study, we demonstrate that ubiquitin-specific protease 20 (USP20) acts as a positive regulator of autophagy initiation through stabilizing ULK1.

View Article and Find Full Text PDF