Tetrahydrobiopterin (BH4) expression is normally strictly controlled; however, its intracellular levels increase considerably following nerve damage. GTP cyclohydrolase I (GCH1) plays a crucial role in regulating BH4 concentration, with an upregulation observed in the dorsal root ganglion in cases of neuropathic pain. In this study, we aimed to develop and evaluate the clinical potential of an RNA interference-based adeno-associated virus (AAV) targeting GCH1 across various species to decrease BH4 levels and, consequently, alleviate neuropathic pain symptoms.
View Article and Find Full Text PDFNeuropathic pain is a type of chronic pain that entails severe prolonged sensory dysfunctions caused by a lesion of the somatosensory system. Many of those suffering from the condition do not experience significant improvement with existing medications, resulting in various side effects. In this study, Sprague-Dawley male rats were used, and long-term deep brain stimulation of the ventrolateral periaqueductal gray was conducted in a rat model of spared nerve injury.
View Article and Find Full Text PDFActivation of mammalian target of rapamycin (mTOR) has been known as one of the contributing factors in nociceptive sensitization after peripheral injury. Its activation followed by the phosphorylation of downstream effectors causes hyperexcitability of primary sensory neurons in the dorsal root ganglion. We investigated whether a single injection of rAAV-shmTOR would effectively downregulate both complexes of mTOR in the long-term and glial activation as well.
View Article and Find Full Text PDF