Publications by authors named "Heeso Noh"

Avian eggshells exhibit excellent antimicrobial properties. In this study, we conducted simulation experiments to explore the defense mechanisms of eggshell membranes with regards to their physical features. We developed a mathematical model for the movement of microorganisms and estimated their penetration ratio into eggshell membranes based on several factors, including membrane thickness, microbial size, directional drift, and attachment probability to membrane fibers.

View Article and Find Full Text PDF

The tail feathers of magpies are iridescent, with hues ranging from navy to violet and green. It has been previously shown that the hexagonal arrangement of melanosomes in the distal barbules is responsible for these colors, but previous simulation models have relied on average values for the parameters associated with this arrangement (e.g.

View Article and Find Full Text PDF

We numerically demonstrated single-port coherent perfect loss (CPL) with a Fabry-Perot resonator in a photonic crystal (PC) nanobeam by using a perfect magnetic conductor (PMC)-like boundary. The CPL mode with even symmetry can be reduced to a single-port CPL when a PMC boundary is applied. The boundary which acts like a PMC boundary, here known as a PMC-like boundary, and can be realized by adjusting the phase shift of the reflection from the PC when the wavelength of the light is within the photonic bandgap wavelength range.

View Article and Find Full Text PDF

Methods for the mass fabrication of 3D silicon (Si) microstructures with a 100 nm resolution are developed using scanning probe lithography (SPL) combined with metal-assisted chemical etching (MACE). Protruding Si structures, including Si nanowires of over 10 µm in length and atypical shaped Si nano- and micropillars, are obtained via the MACE of a patterned gold film (negative tone) on Si substrates by dip-pen nanolithography (DPN) with polymer or by nanoshaving alkanethiol self-assembled monolayers (SAMs). Furthermore, recessed Si structures with arbitrary patterning and channels less than 160 nm wide and hundreds of nanometers in depth are obtained via the MACE of a patterned gold film (positive tone) on Si substrates by alkanethiol DPN.

View Article and Find Full Text PDF

A successful identification of DNA-DNA recognition, based on the waveguide effect of a 1D hybrid prismatic hexagon crystal interfacing of DNA with an organic semiconductor is achieved. This bio-hybrid 1D crystal simultaneously discerns the complementary case at its one end against a 1-mer mismatch in 27-mer nucleic acid sequence at the other end. The loss coefficient value of this waveguide is estimated to be 0.

View Article and Find Full Text PDF

Generation of diffraction gratings by top-down and bottom-up approaches based on scanning probe lithography is demonstrated. With regard to top-down fabrication, silicon nanostructured diffraction gratings are fabricated through one-dimensional (1D) dip-pen-nanolithography (DPN). Nanodot arrays (two-dimensional simple cubic lattice) of alkanethiol self-assembled monolayers (SAMs) are printed by 1D DPN on an Au-film-coated silicon substrate with lattice distances of 700, 1000, and 1200 nm.

View Article and Find Full Text PDF

We demonstrate enhanced absorption in a photonic crystal resonator (PCR) coupled with an optical microfiber. Enhanced absorption is based on coherent perfect absorption (CPA) that is time-reversed lasing. The PCR is fabricated on a silicon membrane with optimized parameters obtained from a numerical simulation.

View Article and Find Full Text PDF

Nature's most spectacular colours originate in integumentary tissue architectures that scatter light via nanoscale modulations of the refractive index. The most intricate biophotonic nanostructures are three-dimensional crystals with opal, single diamond or single gyroid lattices. Despite intense interest in their optical and structural properties, the evolution of such nanostructures is poorly understood, due in part to a lack of data from the fossil record.

View Article and Find Full Text PDF

Brilliant animal colors often are produced from light interacting with intricate nano-morphologies present in biological materials such as butterfly wing scales. Surveys across widely divergent butterfly species have identified multiple mechanisms of structural color production; however, little is known about how these colors evolved. Here, we examine how closely related species and populations of Bicyclus butterflies have evolved violet structural color from brown-pigmented ancestors with UV structural color.

View Article and Find Full Text PDF

We present direct experimental evidence for position-dependent diffusion in open random media. The interference of light in time-reversed paths results in renormalization of the diffusion coefficient, which varies spatially. To probe the wave transport inside the system, we fabricate two-dimensional disordered waveguides and monitor the light intensity from the third dimension.

View Article and Find Full Text PDF

We report on the spectral intensity interferometer (SII) which is a frequency-domain variant of the fourth-order interferometry. In the SII, the power spectrum of the intensity is acquired for light fields of an interferometer. It produces a fringed spectral interferogram which can be acquired by means of an electric spectrum analyzer in keeping the relative time delay constant during the acquisition.

View Article and Find Full Text PDF

Optical absorption is usually considered deleterious, something to avoid if at all possible. We propose a broadband nanoabsorber that completely eliminates the diffracting wave, resulting in a subwavelength enhancement of the field. Broadband operation is made possible by engineering the dispersion of the complex dielectric function.

View Article and Find Full Text PDF

In the title compound, [Ca(C(19)H(11)F(2)O(2))(2)(CH(3)OH)(4)]·4CH(3)OH, the Ca(2+) ion is located on an inversion centre and is hexa-coordinated by two O atoms of two 4,4''-difluoro-1,1':3',1''-terphenyl-2'-carboxyl-ate ligands and four O atoms of four methanol ligands, forming a CaO(6) polyhedron with a slightly distorted octa-hedral coordination geometry. The Ca-O-C angle between the carboxyl-ate group and the calcium ion is 171.8 (2)°.

View Article and Find Full Text PDF

We show theoretically that coherent light can be completely absorbed and transferred to surface plasmons in a two- or three-dimensional metallic nanostructure by exciting it with the time-reversed mode of the corresponding surface plasmon laser ("spaser"). The narrow-band perfect absorption is a generalization and application of the concept of critical coupling to a nanocavity with surface plasmon resonances. Perfect coupling of light to nanostructures has potential applications to nanoscale probing as well as background-free spectroscopy and ultrasensitive detection or sensing.

View Article and Find Full Text PDF

Non-iridescent structural colours of feathers are a diverse and an important part of the phenotype of many birds. These colours are generally produced by three-dimensional, amorphous (or quasi-ordered) spongy β-keratin and air nanostructures found in the medullary cells of feather barbs. Two main classes of three-dimensional barb nanostructures are known, characterized by a tortuous network of air channels or a close packing of spheroidal air cavities.

View Article and Find Full Text PDF

We present a numerical study of the structural properties, photonic density of states and bandedge modes of Vogel spiral arrays of dielectric cylinders in air. Specifically, we systematically investigate different types of Vogel spirals obtained by the modulation of the divergence angle parameter above and below the golden angle value (≈137.507°).

View Article and Find Full Text PDF

Structural colors are generated by scattering of light by variations in tissue nanostructure. They are widespread among animals and have been studied most extensively in butterflies and moths (Lepidoptera), which exhibit the widest diversity of photonic nanostructures, resultant colors, and visual effects of any extant organism. The evolution of structural coloration in lepidopterans, however, is poorly understood.

View Article and Find Full Text PDF

We present a numerical study on photonic bandgap and band edge modes in the golden-angle spiral array of air cylinders in dielectric media. Despite the lack of long-range translational and rotational order, there is a large PBG for the TE polarized light. Due to spatial inhomogeneity in the air hole spacing, the band edge modes are spatially localized by Bragg scattering from the parastichies in the spiral structure.

View Article and Find Full Text PDF

Structural colours, the most intense, reflective and pure colours in nature, are generated when light is scattered by complex nanostructures. Metallic structural colours are widespread among modern insects and can be preserved in their fossil counterparts, but it is unclear whether the colours have been altered during fossilization, and whether the absence of colours is always real. To resolve these issues, we investigated fossil beetles from five Cenozoic biotas.

View Article and Find Full Text PDF

We demonstrated lasing in two-dimensional trivalent network structures with short-range order. Despite the lack of translational and rotational symmetries, such structures possess a large isotropic photonic bandgap. Different from those of a photonic crystal, the band-edge modes are spatially localized and have high quality factor.

View Article and Find Full Text PDF

We describe the self-assembly of nonspherical particles into crystals with novel structure and optical properties combining a partial photonic band gap with birefringence that can be modulated by an external field or quenched by solvent evaporation. Specifically, we study symmetric optical-scale polymer dumbbells with an aspect ratio of 1.58.

View Article and Find Full Text PDF

We demonstrate lasing in photonic amorphous structures that mimic the isotropic nanostructures which produce noniridescent color in nature. Our experimental and numerical studies reveal that lasing becomes most efficient at certain frequencies, due to enhanced optical confinement by short-range order. The optimal lasing frequency can be tuned by adjusting the structure factor.

View Article and Find Full Text PDF

We incorporate optics and an ICCD to record the two-dimensional angular optical scattering (TAOS) patterns retrieved from single aerosolized cells. We analyze these patterns by performing autocorrelations and demonstrate that we are able to retrieve cell size from the locations of the secondary maxima. Additional morphological information is contained in the autocorrelation functions and decay rate of the heights of the autocorrelation peaks.

View Article and Find Full Text PDF

In the time-reversed counterpart to laser emission, incident coherent optical fields are perfectly absorbed within a resonator that contains a loss medium instead of a gain medium. The incident fields and frequency must coincide with those of the corresponding laser with gain. We demonstrated this effect for two counterpropagating incident fields in a silicon cavity, showing that scattering [corrected] can be modulated [corrected] by two orders of magnitude, the maximum predicted by theory for our experimental setup.

View Article and Find Full Text PDF