[011] poled relaxor-PT single crystals provide superior piezoelectric constants and electromechanical coupling factors in the 32 crystal directions, and also exhibit high electrical stability under compressive stresses and temperature changes. In particular, Mn-doped Pb(InNb)O-Pb(MgNb)O-PbTiO (Mn:PIN-PMN-PT) single crystals show a superior coercive field ( ≥ 8.0 kV/cm) and mechanical quality factor ( ≥ 1030), making them suitable for high-power transducers.
View Article and Find Full Text PDFMicromachines (Basel)
July 2024
Piezoelectric composites, which consist of piezoelectric materials and polymers, are widely employed in various applications such as underwater sonar transducers and medical diagnostic ultrasonic transducers. Acoustic transducers based on piezoelectric composites can have high sensitivity with broad bandwidth. In recent studies, it is demonstrated that 2-2 composites based on single crystals provide further increased sensitivity and wide bandwidth.
View Article and Find Full Text PDFThe free-flooded ring (FFR) transducer is an extensively used ring-type acoustic transducer in underwater environments owing to its broad operating frequency bandwidth and small size. However, achieving high sound pressure levels with a single FFR transducer is often difficult, thus necessitating the construction of vertically arranged FFR transducer arrays. This study presents a comprehensive analysis of the electrical and acoustic characteristics of an FFR transducer array by considering the mutual radiation load and the effects of gaps between adjacent piezoelectric rings.
View Article and Find Full Text PDFPiezoelectric composites, which consist of a piezoelectric material and a polymer, have been extensively studied for the applications of underwater sonar sensors and medical diagnostic ultrasonic transducers. Acoustic sensors utilizing piezoelectric composites can have a high sensitivity and wide bandwidth because of their high piezoelectric coefficient and low acoustic impedance compared to single-phase piezoelectric materials. In this study, a thickness-mode driving hydrophone utilizing a 2-2 piezoelectric single crystal composite was examined.
View Article and Find Full Text PDFIn this study, two thin rectangular PVDFs were installed in the form of a cantilever on a FTEH (funnel-type energy harvester), and a CTEH (cymbal-type energy harvester) was fabricated in a form coupled to the upper part of the support. As a result of measuring the energy harvesting sensitivity according to the installation direction of the CTEH, a high voltage was measured in the structure installed on top of the support across all flow velocity conditions. A composite structure PVDF energy harvester combining CTEH and FTEH was fabricated and the amount of power generated was measured.
View Article and Find Full Text PDFUnderwater detection is accomplished using an underwater ultrasonic sensor, sound navigation and ranging (SONAR). Stealth to avoid detection by SONAR plays a major role in modern underwater warfare. In this study, we propose a smart skin that avoids detection by SONAR via controlling the signal reflected from an unmanned underwater vehicle (UUV).
View Article and Find Full Text PDFPolyvinylidene fluoride (PVDF) is an emerging method for energy harvesting by fluid motion with superior flexibility. However, the PVDF energy harvester, which has a high internal impedance and generates a low voltage, has a large power transmission loss. To overcome this problem, we propose an impedance-coupled voltage-boosting circuit (IC-VBC) that reduces the impedance of the PVDF energy harvester and boosts the voltage.
View Article and Find Full Text PDFA vector hydrophone is an underwater acoustic sensor that can detect the direction of a sound source. Wide-band characteristics and high sensitivity enhance the performance of underwater surveillance systems in complex environments. A vector hydrophone comprising a triaxial piezoelectric accelerometer and spherical hydrophone was fabricated and tested in the air and underwater.
View Article and Find Full Text PDFSensors (Basel)
November 2022
A cymbal transducer has a simple structure consisting of a piezoceramic disk and metallic caps and has broadband characteristics when built as an array. The finite element method (FEM) is generally used to analyze the characteristics of acoustic transducers. However, the FEM requires a longer analysis time as the model becomes larger, which makes it limited and less efficient for analyzing the cymbal array.
View Article and Find Full Text PDFFor the purpose of stably supplying electric power to the underwater wireless sensor, the energy harvesting technology in which a voltage is obtained by generating displacement in a piezoelectric material using flow-induced vibration is one of the most attractive research fields. The funnel type energy harvester (FTEH) with PVDF proposed in this study is an energy harvester in which the inlet has a larger cross-sectional area than the outlet and a spiral structure is inserted to generate a vortex flow at the inlet. Based on numerical analysis, when PVDF with L = 100 mm and t = 1 mm was used, the electric power of 39 μW was generated at flow velocity of 0.
View Article and Find Full Text PDFThis paper presents a control technique for reducing the reflection of acoustic signals for the plane array of multilayer acoustic absorbers underwater. In order to achieve this, a plane array of multilayer acoustic absorbers is proposed to attenuate low-frequency noise, with each unit consisting of a piezoelectric transducer, two layers of polyvinylidene fluorides and three layers of the acoustic window. Time-delay separation is used to find the incident and reflected acoustic signals to achieve reflected sound reduction.
View Article and Find Full Text PDFSensors (Basel)
September 2021
Cymbal transducers are frequently used as an array rather than a single element because of their high quality factor and low energy conversion efficiency. When used as an array, cymbal transducers are likely to have a big change in their frequency characteristics due to the interaction with neighboring elements. In this study, we designed an array pattern of cymbal transducers to achieve a wide frequency bandwidth using this property.
View Article and Find Full Text PDFTechniques for reducing the reflection of acoustic signals have recently been actively studied. Most methods for reducing acoustic signals were studied using the normal-incidence wave reduction technique. Although the technique of canceling an object from the normal incidence wave is essential, research on reducing acoustic signals according to the angle of incidence is required for practical applications.
View Article and Find Full Text PDFA free-flooded ring (FFR) transducer can generate low-frequency sound in a small device and has a wide operating frequency bandwidth. Many studies have been performed that can predict the characteristics of an FFR transducer using analytical techniques and an equivalent circuit model (ECM), and methods to predict properties using numerical simulations have recently been developed. However, an ECM, a type of lumped parameter model (LPM), is still widely used to interpret the properties of such transducers in the design process.
View Article and Find Full Text PDFIn this paper we demonstrate the possibility of designing a radiator using structural-acoustic interaction by predicting the pressure distribution and radiation pattern of a structural-acoustic coupling system that is composed by a wall and two spaces. If a wall separates spaces, then the wall's role in transporting the acoustic characteristics of the spaces is important. The spaces can be categorized as bounded finite space and unbounded infinite space.
View Article and Find Full Text PDF