Publications by authors named "Heeseog Kang"

While hypoxic signaling has been shown to play a role in many cellular processes, its role in metabolism-linked extracellular matrix (ECM) organization and downstream processes of cell fate after musculoskeletal injury remains to be determined. Heterotopic ossification (HO) is a debilitating condition where abnormal bone formation occurs within extra-skeletal tissues. Hypoxia and hypoxia-inducible factor 1α (HIF-1α) activation have been shown to promote HO.

View Article and Find Full Text PDF

Loss-of-function mutations in cause Loeys-Dietz syndrome type 3 (LDS3), a rare autosomal-dominant connective tissue disorder characterized by vascular pathology and skeletal abnormalities. Dysregulation of TGF-β/SMAD signaling is associated with abnormal skeletal features and bone fragility. To date, histomorphometric and ultrastructural characteristics of bone with mutations have not been reported in humans and the exact mechanism by which mutations cause the LDS3 phenotype is poorly understood.

View Article and Find Full Text PDF

Heterotopic ossification (HO) is the formation of ectopic bone that is primarily genetically driven (fibrodysplasia ossificans progressiva [FOP]) or acquired in the setting of trauma (tHO). HO has undergone intense investigation, especially over the last 50 years, as awareness has increased around improving clinical technologies and incidence, such as with ongoing wartime conflicts. Current treatments for tHO and FOP remain prophylactic and include NSAIDs and glucocorticoids, respectively, whereas other proposed therapeutic modalities exhibit prohibitive risk profiles.

View Article and Find Full Text PDF

Osteogenesis imperfecta (OI) is a heterogeneous genetic disorder of bone and connective tissue, also known as brittle bone disease. Null mutations in SERPINF1, which encodes pigment epithelium-derived factor (PEDF), cause severe type VI OI, characterized by accumulation of unmineralized osteoid and a fish-scale pattern of bone lamellae. Although the potent anti-angiogenic activity of PEDF has been extensively studied, the disease mechanism of type VI OI is not well understood.

View Article and Find Full Text PDF

Melorheostosis is a rare sclerosing dysostosis characterized by asymmetric exuberant bone formation. Recently, we reported that somatic mosaicism for MAP2K1-activating mutations causes radiographical "dripping candle wax" melorheostosis. We now report somatic SMAD3 mutations in bone lesions of four unrelated patients with endosteal pattern melorheostosis.

View Article and Find Full Text PDF

Null mutations in CRTAP or P3H1, encoding cartilage-associated protein and prolyl 3-hydroxylase 1, cause the severe bone dysplasias, types VII and VIII osteogenesis imperfecta. Lack of either protein prevents formation of the ER prolyl 3-hydroxylation complex, which catalyzes 3Hyp modification of types I and II collagen and also acts as a collagen chaperone. To clarify the role of the A1 3Hyp substrate site in recessive bone dysplasia, we generated knock-in mice with an α1(I)P986A substitution that cannot be 3-hydroxylated.

View Article and Find Full Text PDF

Melorheostosis is a rare non-hereditary condition characterized by dense hyperostotic lesions with radiographic "dripping candle wax" appearance. Somatic activating mutations in MAP2K1 have recently been identified as a cause of melorheostosis. However, little is known about the development, composition, structure, and mechanical properties of the bone lesions.

View Article and Find Full Text PDF

Melorheostosis is a rare hyperostotic disease of the long bones classically characterized by a "dripping candle-wax" radiographic appearance. We recently described somatic activating mutations in MAP2K1 as a cause of melorheostosis. Here, we report distinguishing characteristics of patients with MAP2K1-positive melorheostosis.

View Article and Find Full Text PDF

Melorheostosis is a sporadic disease of uncertain etiology characterized by asymmetric bone overgrowth and functional impairment. Using whole exome sequencing, we identify somatic mosaic MAP2K1 mutations in affected, but not unaffected, bone of eight unrelated patients with melorheostosis. The activating mutations (Q56P, K57E and K57N) cluster tightly in the MEK1 negative regulatory domain.

View Article and Find Full Text PDF

Osteogenesis imperfecta (OI) is a skeletal dysplasia characterized by fragile bones and short stature and known for its clinical and genetic heterogeneity which is now understood as a collagen-related disorder. During the last decade, research has made remarkable progress in identifying new OI-causing genes and beginning to understand the intertwined molecular and biochemical mechanisms of their gene products. Most cases of OI have dominant inheritance.

View Article and Find Full Text PDF

Macrophages can fuse to form osteoclasts in bone or multinucleate giant cells (MGCs) as part of the immune response. We use a systems genetics approach in rat macrophages to unravel their genetic determinants of multinucleation and investigate their role in both bone homeostasis and inflammatory disease. We identify a trans-regulated gene network associated with macrophage multinucleation and Kcnn4 as being the most significantly trans-regulated gene in the network and induced at the onset of fusion.

View Article and Find Full Text PDF

AMP-activated protein kinase (AMPK) is a key regulator of cellular and systemic energy homeostasis and a potential therapeutic target for the intervention of cancer and metabolic disorders. However, the role of AMPK in bone homeostasis remains incompletely understood. Here we assessed the skeletal phenotype of mice lacking catalytic subunits of AMPK and found that mice lacking AMPKα1 (Prkaa1(-/-)) or AMPKα2 (Prkaa2(-/-)) had reduced bone mass compared with the WT mice, although the reduction was less in Prkaa2(-/-) mice than in Prkaa1(-/-) mice.

View Article and Find Full Text PDF

G protein-coupled receptor-regulated PI3Kgamma is abundantly expressed in myeloid cells and has been implicated as a promising drug target to treat various inflammatory diseases. However, its role in bone homeostasis has not been investigated, despite the fact that osteoclasts are derived from myeloid lineage. We therefore carried out thorough bone phenotypic characterization of a PI3Kgamma-deficient mouse line and found that PI3Kgamma-deficient mice had high bone mass.

View Article and Find Full Text PDF

The circadian clock is regulated by a transcription/translation negative feedback loop. A key negative regulator of circadian rhythm in mammals is the PER2 (mammalian PERIOD 2) protein. Its daily degradation at the end of the night accompanies de-repression of transcription.

View Article and Find Full Text PDF

Wnt signaling acts in part through the low density lipoprotein receptor-related transmembrane proteins LRP5 and LRP6 to regulate embryonic development and stem cell proliferation. Up-regulated signaling is associated with many forms of cancer. Casein kinase I epsilon (CKIepsilon) is a known component of the Wnt-beta-catenin signaling pathway.

View Article and Find Full Text PDF

The circadian clock is characterized by daily fluctuations in gene expression, protein abundance, and posttranslational modification of regulatory proteins. The Drosophila PERIOD (dPER) protein is phosphorylated by the serine?threonine protein kinase, DOUBLETIME (DBT). Similarly, the murine PERIOD proteins, mPER1 and mPER2, are phosphorylated by casein kinase I epsilon (CKI), the mammalian homolog of DBT.

View Article and Find Full Text PDF

The loss of the SOST gene product sclerostin leads to sclerosteosis characterized by high bone mass. In this report, we found that sclerostin could antagonize canonical Wnt signaling in human embryonic kidney A293T cells and mouse osteoblastic MC3T3 cells. This sclerostin-mediated antagonism could be reversed by overexpression of Wnt co-receptor low density lipoprotein receptor-related protein (LRP) 5.

View Article and Find Full Text PDF

The mammalian circadian regulatory proteins PER1 and PER2 undergo a daily cycle of accumulation followed by phosphorylation and degradation. Although phosphorylation-regulated proteolysis of these inhibitors is postulated to be essential for the function of the clock, inhibition of this process has not yet been shown to alter mammalian circadian rhythm. We have developed a cell-based model of PER2 degradation.

View Article and Find Full Text PDF