Publications by authors named "Heena Agarwal"

LDL-C lowering is the main goal of atherosclerotic cardiovascular disease prevention, and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is now a validated therapeutic strategy that lowers serum LDL-C and reduces coronary events. Ironically, the most widely used medicine to lower cholesterol, statins, has been shown to increase circulating PCSK9 levels, which limits their efficacy. Here, we show that geranylgeranyl isoprenoids and hepatic Rap1a regulate both basal and statin-induced expression of PCSK9 and contribute to LDL-C homeostasis.

View Article and Find Full Text PDF

Solomonamides, a pair of macrocyclic peptide natural products originating from marine sources, have garnered significant attention within the synthetic community owing to their marked anti-inflammatory efficacy and intricate molecular architectures. In this paper, we present a very detailed investigation into solomonamides, including the challenges associated with the total synthesis, the evolution of our synthetic strategies, structural reassignment, synthesis of all possible stereoisomeric macrocycles, biological assessment, structure-activity relationship (SAR) studies, etc. Within the ambit of this total synthesis, diverse strategies for macrocyclization were rigorously explored, encompassing the Friedel-Crafts acylation, cyclization involving the aniline NH moiety, macrolactamization utilizing Gly-NH, and Heck macrocyclization methodologies.

View Article and Find Full Text PDF

Purpose Of Review: The focus of this article is to highlight the importance of the small GTPase, Ras-associated protein 1 (Rap1), in proprotein convertase subtilisin/kexin type 9 (PCSK9) regulation and atherosclerosis and type 2 diabetes etiology and discuss the potential therapeutic implications of targeting Rap1 in these disease areas.

Review Findings: Cardiometabolic disease characterized by obesity, glucose intolerance, dyslipidemia, and atherosclerotic cardiovascular disease remain an important cause of mortality. Evidence using mouse models of obesity and insulin resistance indicates that Rap1 deficiency increases proatherogenic PCSK9 and low-density lipoprotein cholesterol levels and predisposes these mice to develop obesity- and statin-induced hyperglycemia, which highlights Rap1's role in cardiometabolic dysfunction.

View Article and Find Full Text PDF

Low-density lipoprotein cholesterol (LDL-C) lowering is the main goal of atherosclerotic cardiovascular disease prevention, and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is now a validated therapeutic strategy that lowers serum LDL-C and reduces coronary events. Ironically, the most widely used medicine to lower cholesterol, statins, has been shown to increase circulating PCSK9 levels, which limits their efficacy. Here, we show that geranylgeranyl isoprenoids and hepatic Rap1a regulate both basal and statin induced expression of PCSK9 and contribute to LDL-C homeostasis.

View Article and Find Full Text PDF

We previously demonstrated that hepatic activation of a small G protein of the Ras family, Rap1a, is suppressed in obesity, which results in increased hepatic glucose production and glucose intolerance in obese mice. Here, we show that Rap1a inhibition in obese mice liver also results in fatty liver formation, which is characteristic of the diabetic liver. Specifically, we report that Rap1a activity is decreased in the livers of patients with non-alcoholic steatohepatitis (NASH) and mouse models of non-alcoholic fatty liver disease (NAFLD) and NASH.

View Article and Find Full Text PDF

Objective: Present study investigates the effect of Xylocarpus moluccensis (Lamk.) M. Roem fruit fraction (CDR) on endotoxemia and explores the underlying mechanisms.

View Article and Find Full Text PDF

Wild edible plants are often found to be rich sources of nutrients and medicinally beneficial compounds with pharmacological activities. is a nutritionally important plant and a popular food source in parts of Assam and North-East India. Various microRNAs (miRNAs) have been recently identified in many plants; however, there are no records of identification of miRNAs in any species of .

View Article and Find Full Text PDF

In this study, the seed endosphere of a bacterial wilt tolerant chilli cv. Firingi Jolokia was explored in order to find effective agents for bacterial wilt disease biocontrol. A total of 32 endophytic bacteria were isolated from freshly collected seeds and six isolates were selected based on R.

View Article and Find Full Text PDF

NADPH oxidase (Nox) mediates ROS production and contributes to cardiac remodeling. However, macrophage p47, a Nox subunit regulating cardiac remodeling, is unclear. We aimed to investigate the role of macrophage p47 in hypertensive cardiac remodeling.

View Article and Find Full Text PDF

Endophytes are beneficial plant microbes which help the plants by producing various plant growth promoting substances and also by acting as biocontrol agents against various plant pathogens. In the present study, evaluation of endophytic bacteria isolated from Gnetum gnemon, an ethnomedicinal plant was carried out for their plant growth promoting (PGP) activity and antagonistic potential against bacterial wilt pathogen Ralstonia solanacearum. Initially a total of 40 endophytic bacteria were isolated which were clustered into 13 groups based on RFLP and BOX-PCR fingerprinting.

View Article and Find Full Text PDF

Dendrobium nobile is an orchid species highly popular for its therapeutic properties and is often used as a medicinal herb. Documenting miRNA-target associations in D. nobile is an important step to facilitate functional genomics studies in this species.

View Article and Find Full Text PDF

Hypercholesterolemia is a strong predictor of cardiovascular diseases. The 3-hydroxy-3-methylglutaryl coenzyme A reductase gene () coding for the rate-limiting enzyme in the cholesterol biosynthesis pathway is a crucial regulator of plasma cholesterol levels. However, the posttranscriptional regulation of Hmgcr remains poorly understood.

View Article and Find Full Text PDF

Herein, we report the total synthesis of solomonamide A along with its structural revision for the first time. The natural product possesses very potent anti-inflammatory activity, and it contains a macrocyclic peptide having four consecutive stereocenters on an unnatural amino acid component. The key features in the present synthesis include the application of an Evans aldol reaction, ligand-free Heck macrocyclization and chemoselective oxidations.

View Article and Find Full Text PDF

Cilostazol (Ciloz) a potent Type III phosphodiesterase inhibitor is effective against inflammation, insulin resistance and cardiomyopathy. However, the effect of Ciloz on obesity-associated left ventricular diastolic dysfunction has not been explored yet. Hence, we examined the effect of Ciloz on cardiac remodelling and dysfunction in non-obese and obese-insulin resistant mice infused with AngiotensinII (AngII).

View Article and Find Full Text PDF