Bioengineering (Basel)
March 2023
Inoculation is a widely used method to improve the efficiency of anaerobic digestion (AD) with a high organic load. This study was conducted to prove the potential of dairy manure as an inoculum source for AD of swine manure. Furthermore, an appropriate inoculum-to-substrate (I/S) ratio was determined to improve methane yield and reduce the required time of AD.
View Article and Find Full Text PDFInt J Environ Res Public Health
February 2021
Livestock production systems generate nuisance odor and gaseous emissions affecting local communities and regional air quality. There are also concerns about the occupational health and safety of farmworkers. Proven mitigation technologies that are consistent with the socio-economic challenges of animal farming are needed.
View Article and Find Full Text PDFPoultry farmers are producing eggs, meat, and feathers with increased efficiency and lower carbon footprint. Technologies to address concerns about the indoor air quality inside barns and the gaseous emissions from farms to the atmosphere continue to be among industry priorities. We have been developing and scaling up a UV air treatment that has the potential to reduce odor and other gases on the farm scale.
View Article and Find Full Text PDFIn our study, we monitored the inactivation of two important viruses that are critical in animal husbandry throughout the world. To evaluate the influence of the composting process on inactivation of avian influenza virus (H9N2) in poultry manure compost (PMC) and Encephalomyocarditis virus (EMCV) in pig (swine) manure compost (SMC), the H9N2 and EMCV were injected in dialysis cassettes and buried in two different manure compost piles of poultry and pig manure, respectively. The highest temperature achieved in the PMC and SMC piles during the test period were 75 °C and 73.
View Article and Find Full Text PDFBurial of infectious and potentially infectious livestock and poultry animals is the most common response to an emergency situation. The data set summarizes 22-week-long experiment that simulates the environment found within conventional burial trenches for emergency disposal of animal carcasses, worldwide, sometimes with a topical application of quicklime as it is required in the Republic of Korea. This data set shows the rarely presented evidence of the extremely slow decay of animal carcasses.
View Article and Find Full Text PDFNearly 55,000 outbreaks of animal disease were reported to the World Animal Health Information Database between 2005 and 2016. To suppress the spread of disease, large numbers of animal mortalities often must be disposed of quickly and are frequently buried on the farm where they were raised. While this method of emergency disposal is fast and relatively inexpensive, it also can have undesirable and lasting impacts (slow decay, concerns about groundwater contamination, pathogens re-emergence, and odor).
View Article and Find Full Text PDFA passive sampling method, using retracted solid-phase microextraction (SPME) - gas chromatography-mass spectrometry and time-weighted averaging, was developed and validated for tracking marker volatile organic compounds (VOCs) emitted during aerobic digestion of biohazardous animal tissue. The retracted SPME configuration protects the fragile fiber from buffeting by the process gas stream, and it requires less equipment and is potentially more biosecure than conventional active sampling methods. VOC concentrations predicted via a model based on Fick's first law of diffusion were within 6.
View Article and Find Full Text PDFManaging the disposal of infectious animal carcasses from routine and catastrophic disease outbreaks is a global concern. Recent research suggests that burial in lined and aerated trenches provides the rapid pathogen containment provided by burial, while reducing air and water pollution potential and the length of time that land is taken out of agricultural production. Survival of pathogens in the digestate remains a concern, however.
View Article and Find Full Text PDFMoisture content influences physiological characteristics of microbes and physical structure of solid matrices during composting of animal manure. If moisture content is maintained at a proper level, aerobic microorganisms show more active oxygen consumption during composting due to increased microbial activity. In this study, optimum moisture levels for composting of two bedding materials (sawdust, rice hull) and two different mixtures of bedding and beef manure (BS, Beef cattle manure+sawdust; BR, Beef cattle manure+rice hull) were determined based on oxygen uptake rate measured by a pressure sensor method.
View Article and Find Full Text PDFA passively-ventilated plastic-wrapped composting system initially developed for biosecure disposal of poultry mortalities caused by avian influenza was adapted and tested to assess its potential as an emergency disposal option for disease-related swine mortalities. Fresh air was supplied through perforated plastic tubing routed through the base of the compost pile. The combined air inlet and top vent area is ⩽∼1% of the gas exchange surface of a conventional uncovered windrow.
View Article and Find Full Text PDFFoot and mouth disease (FMD) is one of the acute infectious diseases in hoofed and even-toed mammals, including pigs, and it occurs via acute infection by Aphthovirus. When FMD is suspected, animals around the location of origin are typically slaughtered and buried. Other methods such as rendering, composting, and incineration have not been verified in practice in Korea.
View Article and Find Full Text PDFMonitoring specific volatile organic compounds (VOCs) as markers of biosecure carcass degradation is a promising method to test progress and completion of the composting process. The objective of this study was to test the feasibility of using existing aeration ducts in composting units as practical sampling locations. The secondary objective was to test the feasibility of using marker VOC concentrations in aeration ducts to elucidate information about airflow patterns inside composting units.
View Article and Find Full Text PDFEmergency mortality composting associated with a disease outbreak has special requirements to reduce the risks of pathogen survival and disease transmission. The most important requirements are to cover mortalities with biosecure barriers and avoid turning compost piles until the pathogens are inactivated. Temperature is the most commonly used parameter for assessing success of a biosecure composting process, but a decline in compost core temperature does not necessarily signify completion of the degradation process.
View Article and Find Full Text PDFBiosecure livestock mortality composting systems have been used to dispose of diseased livestock mortalities. In those types of system, visual inspection of carcass degradation is not possible and monitoring VOCs (volatile organic compounds) released by carcasses is a new approach to assess progress of the composting process. In this study, field-scale livestock mortality composting systems were simulated and a laboratory scale composting system with aerobic and anaerobic test units was designed to collect VOC samples from the headspace of decaying plant materials (70 g dry weight) and swine tissues (70 g dry weight) at controlled operating temperatures.
View Article and Find Full Text PDFIn biosecure composting, animal mortalities are so completely isolated during the degradation process that visual inspection cannot be used to monitor progress or the process status. One novel approach is to monitor the volatile organic compounds (VOCs) released by decaying mortalities and to use them as biomarkers of the process status. A new method was developed to quantitatively analyze potential biomarkers--dimethyl disulfide, dimethyl trisulfide, pyrimidine, acetic acid, propanoic acid, 3-methylbutanoic acid, pentanoic acid, and hexanoic acid--from field-scale biosecure mortality composting units.
View Article and Find Full Text PDF