Publications by authors named "Heejung Kong"

Calculated thermodynamic properties for the electrochemical glycerol oxidation at different temperatures and potentials indicate that external applied bias has a more significant influence on reaction selectivity than temperature.

View Article and Find Full Text PDF

Glycerol, a primary by-product of biodiesel production, can be oxidized into various value-added chemicals, significantly enhancing the techno-economic value of photoelectrochemical (PEC) cells. Several studies have explored various photoelectrode materials and co-catalysts, but the influence of electrolytes on PEC glycerol oxidation has remained relatively unexplored despite its significance. Here, we explore the impact of various acidic (pH = 2) electrolytes, namely NaNO, NaClO, NaSO, KSO, and KP, on PEC glycerol oxidation using nanoporous thin film BiVO as a model photoanode.

View Article and Find Full Text PDF

Despite its potential for clean hydrogen harvesting, photoelectrochemical (PEC) water-splitting cells face challenges in commercialization, particularly related its harvesting performance and productivity at an industrial scale. Herein, a facile fabrication method of flexible thin-film photoanode for PEC water-splitting to overcome these limitations, based on laser processing technologies, is proposed. Laser-induced graphene, a carbon structure produced through direct laser writing carbonization (DLWC), plays a dual role: a flexible and stable current collector and a substrate for the hydrothermal synthesis of tungsten trioxide (WO) nanorods (NRs).

View Article and Find Full Text PDF

Obtaining high performance of hematite (α-FeO) in a photoelectrochemical (PEC) water splitting cell is a challenging task because of its poor electrical conductivity and extremely short carrier lifetime. Here, we introduce a new hydrothermal method, called gap hydrothermal synthesis (GAP-HS), to obtain textured hematite thin films with an outstanding PEC water oxidation performance. GAP-HS proceeds in a precursor-solution-filled narrow gap to induce an anisotropic ion supply.

View Article and Find Full Text PDF

Generally, a high-temperature postannealing process is required to enhance the photoelectrochemical (PEC) performance of hematite nanorod (NR) photoanodes. However, the thermal annealing time is limited to a short duration as thermal annealing at high temperatures can result in some critical problems, such as conductivity degradation of the fluorine-doped tin oxide film and deformation of the glass substrate. In this study, selective laser processing is introduced for hematite-based PEC cells as an alternative annealing process.

View Article and Find Full Text PDF