Electromyography (EMG) is a widely used diagnostic technique for evaluating the electrical activity of muscles and their controlling nerves. However, conventional surface electrodes with planar structures often suffer from low spatial resolution and suboptimal signal quality. Here, 3D-shaped, substrate-free, soft, and biocompatible liquid metal electrodes (LMe) are presented as a wearable interface for neuromuscular signal recording.
View Article and Find Full Text PDFAmong physical stimulation modalities, magnetism has clear advantages, such as deep penetration and untethered interventions in biological subjects. However, some of the working principles and effectiveness of existing magnetic neurostimulation approaches have been challenged, leaving questions to be answered. Here we introduce m-Torquer, a magnetic toolkit that mimics magnetoreception in nature.
View Article and Find Full Text PDFSurface enhanced Raman spectroscopy (SERS) has been intensively investigated during the past decades for its enormous electromagnetic field enhancement near the nanoscale metallic surfaces. Chemical enhancement of SERS, however, remains rather elusive despite intensive research efforts, mainly due to the relatively complex enhancing factors and inconsistent experimental results. To study details of chemical enhancement mechanism, we prepared various low dimensional semiconductor substrates such as ZnO and GaN that were fabricated via metal organic chemical vapor deposition process.
View Article and Find Full Text PDFThe bottom-up integration of a 1D-2D hybrid semiconductor nanostructure into a vertical field-effect transistor (VFET) for use in flexible inorganic electronics is reported. Zinc oxide (ZnO) nanotubes on graphene film is used as an example. The VFET is fabricated by growing position- and dimension-controlled single crystal ZnO nanotubes vertically on a large graphene film.
View Article and Find Full Text PDF