In this study, cordierite-based ceramics (2MgO·2AlO·5SiO) were synthesized using high-purity MgO, AlO, and SiO as starting materials. The influence of the MgO/AlO ratio on various properties, including the thermal behavior, pyrometric cone refractory behavior, phase formation, physical properties, and microstructure of the synthesized ceramics, was systematically analyzed. Increasing the MgO/AlO ratio progressively weakened the cordierite network, leading to lower temperatures for liquid formation and melting.
View Article and Find Full Text PDFWe investigated the phase transitions, mechanical properties, and chemical durability of a composition of 9 mol% CaO-stabilized zirconia (9CSZ) doped with 2-4 mol% CeO under thermal stress against molten slag. The monoclinic phase fraction of 9CSZ was 7.14% at room temperature, and CSZ doped with 2-4 mol% CeO showed a slightly lower value of 5.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
This study reveals the significant role of the pre-melting process in growing high-quality (100) β-GaO single crystals from 4N powder (99.995% purity) using the edge-defined film-fed growth (EFG) method. Among various bulk melt growth methods, the EFG method boasts a fast growth rate and the capability of growing multiple crystals simultaneously, thus offering high productivity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Atomic layer deposition (ALD) of high-k dielectric films on MoS channels can lead to inadvertent remote electron doping of channels owing to nonequilibrium ALD conditions, such as the low temperatures and short purge times required for pinhole-free coating, as well as the weak physical adsorption of ALD precursors on MoS. In this study, we propose the application of a simple and effective HO vapor post-treatment (HO PT) at 100 °C immediately after complete integration of bottom- and top-gate monolayer MoS field-effect transistors (FETs), to address the inadvertent channel doping effect. When HO PT was applied to bottom-gate monolayer MoS FETs with an ALD-AlO passivation layer, the mitigation of channel doping was confirmed through electrical and optical measurements.
View Article and Find Full Text PDFBoron carbide (BC) is an essential material in various high-performance applications due to its light weight and hardness. In this work, BC-based composites were fabricated via a powder route consisting of powder mixing, precursor preparation, and hot-pressing under vacuum. The composites' mechanical properties and microstructure were analyzed to investigate the effect of adding minor second-phase particles.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
The catalytic activity of Ni-Fe oxide embedded in CNTs was investigated in terms of valence states and active oxygen species. Ni-Fe oxides were prepared by the sol-gel combustion process, and Ni-Fe oxides embedded in CNT catalysts were synthesized by the catalytic chemical vapor deposition (CCVD) method. The lattice structure of the Ni-Fe oxide catalysts was analyzed, and the lattice distortion was increased with the addition of Fe.
View Article and Find Full Text PDFBackground/objectives: Self-care has great potential to benefit consumers and health systems, but its mainstream adoption is hindered by a systemic lack of consumer health literacy (HL). Published data on consumer awareness of self-care and HL are limited for regions in Asia, and are needed to develop interventions to enhance HL and self-care for diverse populations in this region. The aim of this research was to describe and analyze patterns of HL and awareness of self-care among consumers in Asia.
View Article and Find Full Text PDFHighly selective etching of silicon nitride (SiN) and silicon dioxide (SiO) has received considerable attention from the semiconductor community owing to its precise patterning and cost efficiency. We investigated the etching selectivity of SiN and SiO in an NF/O radio-frequency glow discharge. The etch rate linearly depended on the source and bias powers, whereas the etch selectivity was affected by the power and ratio of the gas mixture.
View Article and Find Full Text PDFGeopolymers exhibit broad application prospects, including construction and radiation shielding, which require excellent mechanical performances. However, investigations on the nature of geopolymerization reactions and their consequential impact on mechanical performance are still vague. In this study, the effect of the major factors of Si/Al ratio and curing time on the geopolymerization reaction and flexural strength were studied based on the microstructure evolution and chemical bonding formation analyzed using the SEM, FTIR, peak deconvolution, and XRD methods.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2023
The oxygen vacancy formation behavior and electrochemical and thermal properties of BaSrFeMnO (BSFMnx, x = 0-0.15) cathode materials were investigated. For thermogravimetric analysis, the weight decreased from 1.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2023
The thermomechanical properties of carbon fiber reinforced silicon carbide ceramic matrix composites (C/SiC CMCs) were studied up to 2000 °C using high-temperature in situ flexural testing in argon. The CMC specimens were fabricated using an ultrahigh concentration (66 vol%) aqueous slurry containing nano-sized silicon carbide powder. The SiC powder compacts were obtained by drying the slurry and were densified using the precursor impregnation and pyrolysis (PIP) method with field assisted sintering technology/spark plasma sintering (FAST/SPS).
View Article and Find Full Text PDFMnO and CeO were doped to improve the corrosion resistance of CSZ (calcia-stabilized zirconia), and we studied the phase formation, mechanical properties, and corrosion resistance by molten mold flux. The volume fraction of the monoclinic phase gradually decreased as the amount of MnO doping increased. The splitting phenomenon of the t(101) peak was observed in 2Mn_CSZ, and in 4Mn_CSZ, it was completely split, forming a cubic phase.
View Article and Find Full Text PDFWe studied the influence of the ethylenediaminetetraacetic acid (EDTA) content used as combustion fuel when fabricating nickel oxide (NiO) nanocatalysts via solution combustion synthesis, as well as the growth behavior of carbon nanotubes (CNTs) using this catalyst. Nickel nitrate hexahydrate (Ni(NO)∙6HO) was used as the metal precursor (an oxidizer), and the catalysts were synthesized by adjusting the molar ratio of fuel (EDTA) to oxidizer in the range of 1:0.25 to 2.
View Article and Find Full Text PDFNanomaterials (Basel)
November 2023
We doped carbon into a TiZrN coating to reduce hydrogen permeability, and investigated the phase formation, bonding state, microstructure, and surface roughness of the carbon-doped TiZrN. The laser output for laser carburization was limited to a range of 20-50%. The grain size of the TiZrN coatings decreased from 26.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2023
Although 4Ce4YSZ has high corrosion resistance, it faces challenges concerning its sinterability and ionic conductivity. Therefore, we studied destabilization behavior caused by corrosion and oxygen vacancy ordering according to ZnO doping. Powders of (4Ce4YSZ)(ZnO) (x = 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2023
The realization of next-generation gate-all-around field-effect transistors (FETs) using two-dimensional transition metal dichalcogenide (TMDC) semiconductors necessitates the exploration of a three-dimensional (3D) and damage-free surface treatment method to achieve uniform atomic layer-deposition (ALD) of a high-k dielectric film on the inert surface of a TMDC channel. This study developed a BCl plasma-derived radical treatment for MoS to functionalize MoS surfaces for the subsequent ALD of an ultrathin AlO film. Microstructural verification demonstrated a complete coverage of an approximately 2 nm-thick AlO film on a planar MoS surface, and the applicability of the technique to 3D structures was confirmed using a suspended MoS channel floating from the substrate.
View Article and Find Full Text PDFThe oxygen reduction reaction (ORR) activity of a Cu-doped BaSrFeO (BaSrFeCuO, BSFCux, x = 0, 0.05, 0.10, 0.
View Article and Find Full Text PDFAs the electron mobility of two-dimensional (2D) materials is dependent on an insulating substrate, the nonuniform surface charge and morphology of silicon dioxide (SiO) layers degrade the electron mobility of 2D materials. Here, we demonstrate that an atomically thin single-crystal insulating layer of silicon oxynitride (SiON) can be grown epitaxially on a SiC wafer at a wafer scale and find that the electron mobility of graphene field-effect transistors on the SiON layer is 1.5 times higher than that of graphene field-effect transistors on typical SiO films.
View Article and Find Full Text PDFThe degradation behavior of yttria-stabilized zirconia by thermal aging was investigated in terms of phase transformation, local atomic structure, and electrical conductivity. The average grain size of 8YSZ was increased from 20.83 μm to 25.
View Article and Find Full Text PDFLattice distortion and amorphization of carbon-doped SUS304 by variation of the laser output were investigated in terms of phase formation and the bonding state. The laser output was changed by 10% in the range of 60% to 100% after covering the SUS304 with carbon paste. A graphite peak and expanded austenite (S-phase) peak were observed in the carbon-doped SUS304, and Rietveld refinement was performed to identify the lattice distortion.
View Article and Find Full Text PDFNanomaterials (Basel)
July 2022