Background: Core muscles serve as a central group within the functional kinetic chain, stabilizing the spine during movement. The Reformer is one of the most popular and primary pieces used in Pilates core exercises, requiring effective control of core muscles. The purpose of this study was to investigate the effect of Reformer spring resistance on core muscle activity.
View Article and Find Full Text PDFSignificant research has focused on doping third-party elements into representative Li-Argyrodites, which typically consist of a metal cation, a sulfide anion, and a halide. These efforts have generally been limited to doping or substituting a single element at each atomic site in the Argyrodite structure, resulting in, at most, binary combinations at each site. Multi-elemental doping or substitution poses a challenge due to the so-called combinatorial explosion issue.
View Article and Find Full Text PDFRational and effective design of a universal near-infrared (NIR) light-absorbed platform employed to prepare diverse activatable NIR fluorogenic probes for in vivo imaging and the imaging-guided tumor resection remains less exploited but highly meaningful. Herein, mandelic acid with a core structure of 4-hydroxylbenzyl alcohol to link recognition unit, a fluorophore and a quencher was employed to prepare activatable probes. We exemplified ester as carboxylesterase (CE)-recognized unit, ferrocene as quencher and phenothiazinium as NIR fluorophore to afford fluorogenic probes termed NBS-Fe-CE and NBS-C-Fe-CE.
View Article and Find Full Text PDFThis review discusses the intriguing yet controversial concept of metabolons, focusing on the malate dehydrogenase-citrate synthase (MDH-CISY) metabolon as a model. Metabolons are multienzyme complexes composed of enzymes that catalyze sequential reactions in metabolic pathways. Metabolons have been proposed to enhance metabolic pathway efficiency by facilitating substrate channeling.
View Article and Find Full Text PDFGiven that type I photosensitizers (PSs) possess a good hypoxic tolerance, developing an innovative tactic to construct type I PSs is crucially important, but remains a challenge. Herein, we present a smart molecular design strategy based on the Förster resonance energy transfer (FRET) mechanism to develop a type I photodynamic therapy (PDT) agent with an encouraging amplification effect for accurate hypoxic tumor therapy. Of note, benefiting from the FRET effect, the obtained nanostructured type I PDT agent (NanoPcSZ) with boosted light-harvesting ability not only amplifies superoxide radical (O ) production but also promotes heat generation upon near-infrared light irradiation.
View Article and Find Full Text PDFAtmospheric nitrate, including nitric acid (HNO), particulate nitrate (pNO), and organic nitrate (RONO), is a key atmosphere component with implications for air quality, nutrient deposition, and climate. However, accurately representing atmospheric nitrate concentrations within atmospheric chemistry models is a persistent challenge. A contributing factor to this challenge is the intricate chemical transformations involving HNO formation, which can be difficult for models to replicate.
View Article and Find Full Text PDFThe concept of molecular design, integrating diagnostic and therapeutic functions, aligns with the general trend of modern medical advancement. Herein, we rationally designed the smart molecule ER-ZS for endoplasmic reticulum (ER)-targeted diagnosis and treatment in cell and animal models by combining hemicyanine dyes with ER-targeted functional groups (p-toluenesulfonamide). Owing to its ability to target the ER with a highly specific response to viscosity, ER-ZS demonstrated substantial fluorescence turn-on only after binding to the ER, independent of other physiological environments.
View Article and Find Full Text PDFActivatable fluorescent and chemiluminescent dyes with near-infrared emission have indispensable roles in the fields of bioimaging, molecular prodrugs, and phototheranostic agents. As one of the most popular fluorophore scaffolds, the dicyanomethylene-4H-pyran scaffold has been applied to fabricate a large number of versatile activatable optical dyes for analytes detection and diseases diagnosis and treatment by virtue of its high photostability, large Stokes shift, considerable two-photon absorption cross-section, and structural modifiability. This review discusses the molecular design strategies, recognition mechanisms, and both in vitro and in vivo bio-applications (especially for diagnosis and therapy of tumors) of activatable dicyanomethylene-4H-pyran dyes.
View Article and Find Full Text PDFAtmospheric nitrate and sulfate are major inorganic particulate matter components that impact human and ecosystem health and air quality. Over the last several decades, emissions of the precursor gases, nitrogen oxides (NO = NO + NO) and sulfur dioxide (SO), have dramatically decreased in the US in response to federal regulations. However, the response in concentrations of particulate nitrate (pNO) and sulfate (pSO) have not followed predictions due to complex non-linear chemistry feedbacks that may differ amongst environments (i.
View Article and Find Full Text PDFSince their inception, rhodamine dyes have been extensively applied in biotechnology as fluorescent markers or for the detection of biomolecules owing to their good optical physical properties. Accordingly, they have emerged as a powerful tool for the visualization of living systems. In addition to fluorescence bioimaging, the molecular design of rhodamine derivatives with disease therapeutic functions (, cancer and bacterial infection) has recently attracted increased research attention, which is significantly important for the construction of molecular libraries for diagnostic and therapeutic integration.
View Article and Find Full Text PDFPurpose: This study aimed to investigate the effects of nursing professionalism on job embeddedness to stay in hospital nurses.
Methods: This cross-sectional survey recruited 438 nurses working at four general hospitals and three small to medium hospitals in K province, South Korea. Data were collected from June 10 to September 10, 2022 using structured questionnaires and then analyzed with IBM SPSS Statistics for Windows, version 25.
A 34-year-old nulliparous gravid female presented with acute bilateral pyelonephritis at 29 + 5 weeks gestation. The patient was relatively well until two weeks ago when a slight increase in amniotic fluid was noted. Further investigation revealed myoglobinuria and significantly elevated levels of creatine phosphokinase.
View Article and Find Full Text PDFThe E3 ubiquitin ligase parkin plays neuroprotective functions in the brain and the deficits of parkin's ligase function in Parkinson's disease (PD) is associated with reduced survival of dopaminergic neurons. Thus, compounds enhancing parkin expression have been developed as potential neuroprotective agents that prevent ongoing neurodegeneration in PD environments. Besides, iron chelators have been shown to have neuroprotective effects in diverse neurological disorders including PD.
View Article and Find Full Text PDFAltered drug concentrations may induce unexpected toxicity or treatment failure; thus, understanding the factors that alter the pharmacokinetic profiles of drugs is crucial for optimal disease treatment. Vitamin D receptor (VDR), a nuclear receptor, regulates the expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1), which are crucial determinants of drug pharmacokinetics. In this study, we investigated the effects of 1α,25-dihydroxyvitamin D [1,25(OH)D], a VDR ligand, on the metabolism, transport, and pharmacokinetics of indinavir, a dual substrate of CYP3A4 and MDR1.
View Article and Find Full Text PDFChemical warfare agents (CWAs) are among the most prominent threats to the human population, our peace, and social stability. Therefore, their detection and quantification are of utmost importance to ensure the security and protection of mankind. In recent years, significant developments have been made in supramolecular chemistry, analytical chemistry, and molecular sensors, which have improved our capability to detect CWAs.
View Article and Find Full Text PDFThe aggregation of aminoacyl transfer RNA synthetase complex-interacting multifunctional protein-2 (AIMP2) accelerates α-synuclein aggregation via direct interaction, leading to enhanced dopaminergic neurotoxicity in Parkinson's disease (PD). Thus, it would be beneficial to prevent AIMP2 aggregation to suppress α-synucleinopathy in PD. In this study, we screened small compounds that could inhibit the in vitro aggregation of AIMP2 using a 1909 small-compound library.
View Article and Find Full Text PDFKorean J Physiol Pharmacol
September 2022
The increased expression of receptors for advanced glycation end-product (RAGE) is known as a key player in the progression of vascular remodeling. However, the precise signal pathways regulating RAGE expression in vascular smooth muscle cells (VSMCs) in the injured vasculatures are unclear. Given the importance of mitogen-activated protein kinase (MAPK) signaling in cell proliferation, we investigated the importance of MAPK signaling in high-mobility group box 1 (HMGB1)-induced RAGE expression in VSMCs.
View Article and Find Full Text PDFCurrently, the role of the lysosome, endoplasmic reticulum, or dictyosome in the transcription and translation of programmed cell death ligand 1 (PD-L1) is well revealed, but the role and function of mitochondria in the PD-L1 expression in tumors is still not fully researched, making it hard to offer a novel PD-L1 regulation strategy. In this research, it is newly revealed that mitochondria oxidative phosphorylation (OXPHOS) depression can be used as an effective PD-L1 down-regulation method. To offer an ideal and high-effective tumor mitochondria-targeted OXPHOS depression nanosystem, IR-LND is prepared by conjugating mitochondria-targeted heptamethine cyanine dye IR-68 with mitochondrial complexes I and II depression agent lonidamine (LND), which then further self-assembled with albumin (Alb) to form IR-LND@Alb nanoparticles.
View Article and Find Full Text PDFPathological protein inclusion formation and propagation are the main causes of neuronal dysfunction in diverse neurodegenerative diseases; therefore, current disease-modifying therapeutic strategies have targeted this disease protein aggregation process. Recently, we reported that peucedanocoumarin III (PCiii) is a promising therapeutic compound with the ability to disaggregate α-synuclein inclusion and protect dopaminergic neurons in Parkinson's disease (PD). Here, we found that -4'-acetyl-3'-tigloylkhellactone (racemic peucedanocoumarin IV [PCiv]), a structural isomer of PCiii with a higher synthetic yield presented a strong anti-aggregate activity to a degree comparable to that of PCiii.
View Article and Find Full Text PDFGiven the increasing aging population in South Korea, the quality of life of older adults must be ensured. This cross-sectional descriptive study investigated the gender-specific factors associated with health-related quality of life in obese older adults aged 65 years and above based on Korean National Health and Nutrition Examination Survey (KNHNES) 2020 data. In total, 507 obese Korean older adults participated in the 8th KNHNES.
View Article and Find Full Text PDFMultidrug-resistant (MDR) gram-positive bacteria are an inevitable source of infection for hospitalized patients and one of the reasons for the increased proportion of severe diseases. Therefore, constructing smart agents for specific and effective combating infections in vivo caused by MDR gram-positive strains is very urgent. Herein, we reported a structure-oriented design strategy (SODS) to reasonably construct an organic photo-antimicrobial near-infrared (NIR) AIEgen BDPTV equipped with a phenylboronic acid moiety, which could be bound to the thick peptidoglycan layer of MDR gram-positive bacteria, resulting in a tight distribution with the cell wall in a confined space.
View Article and Find Full Text PDFCombating biofilm infections remains a challenge due to the shield and acidic conditions. Herein, an acid-responsive nanoporphyrin (PN3-NP) based on the self-assembly of a water-soluble porphyrin derivative (PN3) is constructed. Additional kinetic control sites formed by the conjugation of the spermine molecules to a porphyrin macrocycle make PN3 self-assemble into stable nanoparticles (PN3-NP) in the physiological environment.
View Article and Find Full Text PDF